智慧應用 影音
TERADYNE
Event
深度偽造技術
Nikola Tesla(1856~1943)在1890年代預言「21世紀時,機器人將取代古代文明中奴隸勞動所佔據的位置。」這項預言在當今的人工智慧(AI)技術的發展下似乎正在實現。早期的AI技術已經能夠大致準確地分辨狗和貓的圖片,隨著生成式人工智慧(generative AI)的突破性發展,它逐漸深入我們的生活並引領著社會變革。當AI技術進入深度偽造(DeepFake)的層次,將會加速我們進入元宇宙世界,實現Tesla的預言。深度偽造是一種透過電腦生成的影片技術,用於創造看似真實的虛假影像。它使用AI技術將一個人的臉替換為另一個人的臉,同時匹配微小的面部表情,從說話到皺眉都能保持一致。這項技術利用深度學習算法和大量訓練數據生成逼真的影片,使觀眾難以區分真實和偽造的影像。製作一個臉部交換的視頻通常需要以下步驟:首先,使用編碼器處理2個人數百萬張的照片。編碼器是一個AI系統,用於尋找並學習2個臉部之間的相似之處,並將這些相似之處簡化為共同的特徵,並壓縮圖像。然後,使用一個名為解碼器的第二個AI系統,從壓縮的照片中恢復出臉部。你訓練一個解碼器來恢復第一個人的臉部,另一個解碼器來恢復第二個人的臉部,因為這兩張臉是不同的。當需要進行臉部交換時,只需將編碼的照片輸入「另一個」解碼器。例如,將某甲的臉部壓縮圖像輸入已經訓練過某乙的解碼器。然後,解碼器使用某甲的表情和面部定位來重建某乙的臉部。為了製作逼真的影片,這個步驟必須處理每一幀畫面。現今,訓練某甲與某乙臉部的模型,以及在影片中合併臉部的過程,幾乎可以即時完成。早期有名的深度偽造例子包括2個假影片:美國前總統Barack Obama稱呼川普(Donald Trump)為「完全蠢貨」和Mark Zuckerberg吹噓對數十億人的被盜數據擁有絕對控制。我們在烏克蘭的戰爭中也見證假影片的應用,以及使用知名人物臉孔的成人內容。然而,深度偽造技術也可能被用於音頻和圖像,大部分國家禁止未經同意且具有邪惡目的的深度偽造使用。不過,除了潛在危險性,深度偽造技術在一些有趣且輕鬆的應用中也顯示出潛力。例如,將深度偽造應用於教育領域,可以使課堂更有趣。想像一下,在英文課堂上,可以邀請虛構的名人來講解課程,例如劉德華。雖然使用真實人物的深度偽造可能會被視為非法,但是使用不存在的人物則可以避免法律問題。企業也開發並銷售深度偽造服務,以實現自動化新聞播報,甚至減少演員的參與,節省成本。例如,TikTok 上就有一個深度偽造的阿諾史瓦辛格(Arnold Schwarzenegger),使用俄語講話,省去了他學習俄文的功夫。深度偽造技術的應用範圍廣泛且多樣,但我們必須謹慎使用,以避免濫用和潛在的負面影響。只有在合法、道德且有創意的方式下,才能充分發揮深度偽造技術的潛力。(作者為國立陽明交通大學資工系終身講座教授暨華邦電子講座) 
全面散熱(二)
量子電腦有機會成為終極的散熱問題解決方案。Richard Feynman最原始的概念是以量子的方法解決量子問題,首先講究的是效能。現在耗電最兇的人工智慧(AI)伺服器相關應用,在量子電腦上也都有其相應的量子AI演算法,速度相對於現有的傳統AI運算都是平方加速(quadratic speedup)、甚至是指數加速(exponential speedup)。量子電腦計算速度快自然耗能小,逸出的廢熱就更少。這是量子計算於散熱問題上的第一重好處。  Feynman第二篇談論量子計算的文獻主題,是量子計算是可逆的(reversible),這是與散熱直接相關的議題。  傳統的二進位邏輯閘運算,譬如AND gate,輸入有2個位元,但是輸出只有1個位元,也就是說傳統的二進位計算過程可能會喪失訊息,而喪失訊息意味著熵值增加,這就是廢熱的來源。  量子計算的操作基本上是以微波來控制、轉變量子位元的狀態(state),計算起始的量子位元數目與計算完成的量子位元數目是一樣的,因此沒有訊息的喪失。量子計算的可逆性基本上是說如果從計算完成的量子位元反著步驟計算,可以回復出起始的量子位元狀態。這種可逆性只存在於熵值不增加的計算過程中。也就是說,先姑且不論量子計算的週邊線路和冷卻需求所可能產生的廢熱,量子計算的核心部分理論上是不會生廢熱的。這是量子計算於散熱問題上的第二重好處。  量子計算另一個優點較少被提到:量子計算也是記憶體計算。所有的量子計算都在停留在一組量子位元上反復操作,毋需將訊息挪動到緩存記憶體(buffer memory)上—其實目前也沒有量子記憶體可用。量子位元本身既是處理器,也是記憶體本身,這就是記憶體計算,自然不會產生搬運訊息產生的焦耳熱,絕大部分的量子位元屬於此一類型。  唯一的例外是光子量子位元。光子在運算時的確會在矽光子的模組上處理,訊息的確會在光源和感測器中被傳輸。但是如上文矽光子一段所述,光子的傳輸理論上也不會生焦耳熱的。因此目前困擾半導體業的焦耳熱問題,在量子計算的過程中只存在於其周邊線路,並不構成主要問題。 這是量子計算於散熱問題上的第三重好處。  半導體發展迄今,摩爾定律的推進以及先進封裝的應用,持續增益晶片系統的效能。但由於單位時間內所處理的資料量益發龐大,而晶片的集積度亦同時大幅提高,散熱效率提升的需求更加迫切,從晶片、模組、系統各層次的散熱方式必須同時於設計時就開始考慮。可以考慮的空間包括線路設計、材料使用、封裝方式、外加的散熱機制(水冷式封裝就是這樣進場的!)等,乃至變更基礎的計算架構與原理。  廢熱處理已成計算設備各層級工程的共同瓶頸,我們需要散熱總動員!
全面散熱(一)
量子電腦、記憶體計算(in-memory computing)、矽光子、銅混合鍵合(copper hybrid bonding)、氮化鋁基板/晶圓、氮化矽基板/晶圓等,這些新技術有什麼共通點?  在進入詳細討論之前,我們先退一步看半導體過去的發展考慮。成本、效能、功耗等3個面向一直是半導體過去技術發展的主軸。成本以前靠製程微縮和良率提升,效能提升也靠微縮。功耗問題面向較為多樣化,節省能耗基本上靠降電壓、使用低電阻材料和設計優化等,處理廢熱的手段就更複雜了。  上述3個面向的進展需要有權衡的考慮—工程一向是綜合效能的權衡問題。資深的電腦使用者應該記得過去有一段時間的個人電腦中裝有風扇,也就是說當時要求CPU效能的大幅邁進,迫使散熱手段必須升級,外延到在系統層級另外加風扇氣冷的手段。之後CPU的線路設計業界有個默契,控制CPU發熱在單靠IC自然氣冷散熱就足以應付的程度,惱人的風扇聲就暫時從辦公桌上消失。  晶片中的能耗機制主要有2種:一種是電晶體開關的能耗。目前一個狀態切換(switch)的能耗大概是在飛焦耳(femto joule)的數量級;另外一種是焦耳熱(joule heat),就是電子流經金屬連線因為電阻所產生的廢熱。由於金屬連線的寬度在製程長年的微縮下變得愈來愈細,電阻不容易再下降,晶片的效能又愈來愈高、傳送的訊息愈來愈多。焦耳熱在目前的von Neumann計算架構下是熱耗散的主要源頭。  廢熱如果無法及時排出,可能會使晶片、系統失效甚或損毀。解決的源頭自然是從降低能量使用開始,然後才是排放廢熱的處理。  散熱的手段有3種:輻射、傳導和對流。輻射的功率正比於溫度的四次方,對於晶片這樣的低溫,輻射的散熱效率是遠遠不夠的,所以半導體或電子系統的散熱方法通常是傳導和對流的結合。  氮化鋁和氮化矽都是半導體業界所熟悉的材料,現在也用做散熱材料。氮化鋁的導熱係數高;氮化矽的導熱係數雖然稍低,但是其他機械特性如強度和斷裂韌性都很高,綜合性能最佳。這二者目前都已製成陶瓷基板/晶圓,用於功率模組的隔熱板、或做為外延(epitaxy)功率元件的晶圓基底。這是以高導熱率材料來散熱的辦法。如果需要的話,在基板/晶圓底下還可以用活性金屬釬焊法(Active Metal Brazing;AMB)加上一層銅,提高散熱效率。  更積極些的辦法是減少電源及訊號傳導所發出的焦耳熱。 矽光子是以光訊號來替代電訊號。理論上光訊號的傳導是不耗能的,自然也不會有廢熱,可以極大程度的避免焦耳熱的產生。這是為什麼矽光子預計在2025年會進入量產的主要動力之一—人工智慧誘發的大量計算,使得現有的電訊號傳送方式快要讓功耗和散熱難以負荷。 3D封裝中的銅混合鍵合讓數個異構(heterogeneous)晶片間原有的金屬連線,變成堆疊晶片上重分布層(Redistribution Layer;RDL)的直接對口銅金屬鍵合,大幅縮短晶片之間原先金屬連線的長度,所以焦耳熱是降低了。但是3D封裝也大幅提升晶片的集積度,使得原本已然艱難的散熱問題更加惡化。譬如原先用2.5D封裝的高頻寬記憶體(High Bandwidth Memory;HBM)與CPU/GPU,在改為3D封裝之後,居於最底層的邏輯晶片由於上層的記憶體晶片層數增加,勢必要處理更多的資料運算,因此散熱的負擔更加沉重,這就是進行式的挑戰。  記憶體計算的想法更為激進。如果電腦依照von Neumann架構運作,資料必須在CPU與記憶體間反覆傳遞,這是焦耳熱產生的最主要原因,那就乾脆把二者合併為一,就沒有兩個晶片間相互傳送的問題。這不算是原始創意,因為人腦就是這麼運作的。只是這方向的研究還在摸索中。
智慧農業與品茶之道
英國友人找我談智慧農業,詢問能否檢驗茶的品質,此難度雖高,但有機會以我們發展的物聯網技術AgriTalk完成其願望。AgriTalk已有能力完成水質品評,因為我們曾經建置智慧漁塭養殖,已經有分析水的基本知識與經驗,知道如何利用水底感測器來量測水的硬度與酸鹼值計算方式,可以進行茶水的分類品評。茶葉的分類也辦得到,在茶葉發酵與烘焙過程,AgriTalk能以感測器(溫溼度等)監測,再利用基因定序,可以品評6種不同發酵程度和不同烘焙程度的茶。真正的挑戰是茶的風味,仍然依靠專家的感官來品評,包括氣味、味道以及口感。現今電子鼻的感測準確度遠遜於常人,遑論專家。味覺感測器發展仍在初階,而口感更難定義。我們仍有很大努力空間。英國友人說他們愛喝茶已到了上癮程度。在冷戰時期,英國怕被蘇聯丟原子彈,蓋了避難室。接下來絞盡腦汁地想,如何將大量的茶葉擠進避難室,供應英國佬喝下午茶。在英國的國家檔案館內有一份1955年英國食品部的極機密文件,當中寫著,核戰後茶的供應將非常吃緊,每個人平均每周吃不到一盎司,嚴重影響英國人「身心健康」。為了反諷英國人的愛喝茶,弗萊明(Ian Lancaster Fleming,1908~1964)將筆下的007龐德形容成不愛喝茶的人。傳聞英國女王喜歡中國的綠茶。我曾為文提到英國女王與北埔「東方美人」茶的故事。發表之後,峨眉鄉林文秀先生特地告知我,最頂級的東方美人茶主要生產地是在北埔旁邊的峨眉鄉。北埔是茶葉集散地,峨眉的茶都送到北埔來販售,兩地陪襯,相得益彰。林先生有雄心壯志,希望在峨眉鄉塑造一個「東方美人街」,形成峨眉文化商圈,帶動地方建設。他帶我到峨眉鄉的幾個茶廠見識。其中徐耀良茶園及楊隆茶園的產品曾多次在全台灣的競賽中贏得冠軍。我品嘗2個茶園的東方美人茶之後,果然花香、果香、茶香滿溢,東方美人茶的茶樹在小綠葉蟬的叮咬下,防禦機制產生自然反應,散發出花果蜜香,成就了特殊風味,遠勝於過去我喝過的茶。我詢問其種植方式,他們都毫不藏私地與我分享。我綜合其說法,種茶之道無他,細心及耐心是重點。當中有些需要耐心的工作可以利用物聯網、大數據及人工智慧(AI)技術進行,我相信科技化後的東方美人茶必大有可觀。
崛起中的中國第三類半導體產業
不久前我請教台灣一位長期投入碳化矽(SiC)元件開發的教授,我問他,你使用過不同廠商的基板,哪一家的表現最好?因為碳化矽基板佔其製作好晶圓成本的一半以上,而且又是技術難度最高的部分。他莞爾地對我說,要說實話嗎?他的結論是中國的表現最好,而且價格最具有競爭力,台灣生產的及美國的次之,美國廠商因為是IDM,最好的基板大都留給自家用。幾個月前有2則新聞吸引我的注意,一則是德國英飛凌(Infineon)與中國的山東天岳、北京的天科合達,簽訂碳化矽基板長期採購合約,現階段供應6吋晶圓,而未來將是8吋。2家公司是目前中國碳化矽基板的主要供應商。另一則新聞是歐洲的意法半導體(STM)與廈門的三安光電,計劃在重慶建1座8吋碳化矽晶圓廠,劍指中國蓬勃發展中的電動車產業。三安也規劃自建1座8吋碳化矽基板的生產基地。英飛凌與意法,佔碳化矽元件及模組全球市場50%以上比例,而意法更是率先在2018年供應Tesla Model 3碳化矽元件,此舉正式引爆碳化矽風潮。目前全球碳化矽基板的需求量每年約50萬片,以6吋為主流,七成以上由美國的2家廠商所供應。中國市佔率大概10%,但是隨著產能逐漸開出,以及中國在電動車的強勁需求,預估中國碳化矽基板的全球市佔率,很快會超越5成。現在碳化矽產業目光的焦點在於8吋晶圓開發,傳統6吋以下的成長單晶柱(ingot)的方法,是使用蒸氣的昇華法,將6吋的seed wafer置於上端,利用高溫爐內材料的蒸氣附著於上端晶圓的表面,而得以成長晶柱。此方法最大缺點,乃晶柱成長速度慢且晶柱長不厚,若運用此法在成長8吋的基板,將更形捉襟見肘。上述中國的2家供應商已開始使用新的液態成長法,來成長碳化矽8吋晶柱。此法較接近一般矽晶圓的晶柱成長,在上端可以使用較小尺寸的seed wafer來成長8吋的晶柱,由於不需要到氣態,成長的溫度也可以較低,同時速率較快,晶柱也可以厚些。但是液態成長法需處理液態材料與固態晶柱的介面,在溫度梯度的控制要非常精準,這恐怕不是一般商用爐子能做到的。因此推論中國供應商已經具有自建精確溫度控制爐子的能力,事實上一家產能夠規模的碳化矽基板廠商,是需要上千台的高溫長晶爐,因此自建高溫爐是必要的選項,這方面中國的供應商是做到了。我們再來談另一個第三類半導體氮化鎵(GaN)。不久前的一則新聞,美國一家氮化鎵元件主要供應商EPC,向美國聯邦法院及國際貿易委員會(ITC),控告中國的英諾賽科侵害其在氮化鎵元件的專利。事實上英諾賽科從2023年第1季開始,其在氮化鎵元件的營收已經躍居全球首位,其在珠海及蘇州各有1座8吋氮化鎵專屬的晶圓廠,以及超過20部有機金屬化學氣相沉澱設備(MOCVD)成長氮化鎵的磊晶片。目前月產能為1.5萬片,佔了全球總產能一半以上,預計在2025年英諾賽科產能要擴充到每月7萬片,以此推估需要70部MOCVD機台。英諾賽科有別於其他主要氮化鎵供應商,其商業模式是IDM,在成本上相對是有優勢。相同的元件規格,比其他供應商的價格低30~50%。氮化鎵元件在2年前,因為65W的手機快充電源插頭熱門一時,如今市場比較低迷。但是近來在人工智慧(AI)伺服器所需的直流電源轉換,對於中低壓氮化鎵的需求正在崛起,這部分需要操作在較高的切換頻率,及更大的輸出電流,正符合到氮化鎵的物理特性。如果氮化鎵的價格有機會降到略高於矽基功率元件,毫無疑問氮化鎵的需求是會起飛的。在第三類半導體研發上中國也是不遺餘力地投入。以大學為例,幾所著名的大學,如北京清華、浙江大學、西安交大、成都電子科大,甚至南京航天,都成立關於第三類半導體的研究群,訓練出眾多的碩博士生投入相關的產業。每年IEEE功率半導體最主要的會議ISPSD,中國的高校在第三類半導體的議題上,貢獻一半以上的論文。中國第三類半導體廠商的確接受政府為數不少補助,才得以建立今天的產業規模。從已公布的財報而論,山東天岳及天科合達本業都是虧損的,英諾賽科離損益兩平是更遙遠。在此情境下,各家仍卯足全力來擴產,似乎是不理性的行為。但是綜觀中國過往在太陽能、LED甚至鋰離子電池,在市場還在萌芽之際,便積極地投入產能,只要這個產業的成長性是可被預期的,假以時日,中國擁有這產業的半壁江山,就具有充分話語權。台灣該如何自處呢?在此態勢下。多年前個人就說明了,第三類半導體產業需要供應鏈的垂直整合,而在台灣卻缺乏政策上有效的支持,現在再來談,為時有點晚。我們只有期望在全球兩大陣營的僵持下,我們想辦法能左右逢源,但這可以維持多久呢? 
奈米壓印的初始應用 (二):近期市場
Canon的FPA-1200NZ2C奈米壓印機這個型號,其實最晚在2015就已出現在相關的學術期刊上了。已經出現8年的舊機型能夠重新上新聞並且吸引注意,最主要的原因在於它將要進入比較大範圍的半導體量產應用。  延伸報導名人講堂:奈米壓印的初始應用 (一):技術與挑戰奈米壓印有2個特性可以有效地拓展它的應用範圍。第一,是它不僅適用於2D圖形的列印,而且有些3D圖形也可以用單一模板來轉移線路圖形,有效的簡化製程。另外一個特性,是奈米壓印可以用於任何基板,不只是適用於矽晶圓上。  這2個特性讓奈米壓印已經開始被應用於一些次領域,譬如生物感測器等。只是這些領域的產值相對較小,未能獲得充分關注。  這次新聞受到較多關注的原因,是奈米壓印要進入主流半導體製程行列,而且時程明確。  鎧俠(Kioxia;原東芝記憶體)與SK海力士(SK Hynix)將於2025年開始,以奈米壓印技術生產3D NAND Flash。NAND在很長一段時間內是市佔率僅次於DRAM的半導體產品類別,奈米壓印進入大宗產品的製程行列,意義非凡。  東芝(Toshiba)於2004年就開始以奈米壓印試產NAND,目前與Canon和大日本(Dai Nippon)等公司為共同推動建立奈米壓印技術生態的主力成員。SK海力士與鎧俠素有各式的市場、技術合作,同時宣布採用奈米壓印技術也在情理之中。  NAND可以率先採用奈米壓印有其技術上的理由:NAND是記憶體陣列。一般記憶體陣列線路圖形高度重複,基礎單元結構相對簡單。最重要的是其容量設計可以留有冗餘(redundancy),如果製造過程中有局部線路圖形產生缺陷,可以用硬體方法融斷(fuse)受損部分,以原先預留的冗餘部分替代,晶圓整體良率可以維持在較高水準。  如果奈米壓印要應用到DRAM,缺陷密度的要求也一樣可以較為寬容。但是DRAM底部有很稠密的電晶體觸點(contact),因此上下層間的對準就變得格外重要,以前奈米微影機的技術規格尚達不到量產的要求,需要再改善覆蓋後才談得到DRAM的應用。至於邏輯晶片,由於線路中大多不是重複的圖形,比較少有冗餘設計的可能,對於粒子或缺陷極為敏感。目前的奈米微影機仍需降低粒子和缺陷才有辦法跨入邏輯晶片的製造應用。  另一個比較有期待的領域是矽光子。奈米壓印在轉印線路圖形時的線邊緣粗糙度(line-edge roughness)的表現優於曝光機的表現,因為沒有光的干涉、光阻蝕刻等問題,這使得光子在通過這些以奈米壓印製造的光元件時,表現更符合原設計的預期效能,而且一般光學元件製造層數較少,層間覆蓋的問題沒有那麼尖銳。另外,光學元件很多是3D圖形的,這正是奈米壓印的強項之一。  矽光子還有另外一個機緣。原先在異質整合路線圖(Heterogeneous Integration Roadmap;HIR)中計劃於2020年矽光子就會出現在異質整合晶片市場中,但是實際上被延遲了。由於人工智慧(AI)應用的興起,大量資料移動的需求要以光的形式來實現,台積電就宣布在2025年開始矽光子的量產。  半導體產業的邏輯,總是會將機器設備的價值利用到最後一刻,善用原始的巨大投資,所以對新設備的引進就有潛在的利用障礙。但是對於新建的產線或廠,只要事前有足夠的生產驗證,大規模的採用新設備比較有機會。奈米壓印恰好於此時較明顯的出現在產業的視野之內,不能不說是風生水起的機緣了! 
AI時代企業的關鍵機會和思維
隨著人工智慧(AI)技術發展,人工智慧已深入人類生活。為了讓產業、政府和學術界能夠理解AI、GPT等科技的重要性及未來趨勢,中華政大企業管理協會特別舉辦年度企業論壇,邀請國內專家探討AI時代的產業策略,期許台灣把握人工智慧的機會,引領世界經濟向前。我被邀請給一個主題演講(Keynote Speech),在論壇分享「AI時代企業的關鍵機會和思維」, 以智慧城市的發展前景引導出台灣在AI時代的優勢和發展策略,並探討企業在這個時代所需具備的關鍵能力和思維,以及AI對人類所帶來的挑戰和影響。為了因應AI所帶來的挑戰,我呼籲大家學習電腦語言(如Python),因為在未來,電腦語言將成為不可或缺的技能,並能夠增強個人的競爭力。今日電腦語言已愈來愈人性化,形同學習英文或日文,大家不應害怕排斥。同時,我也提到在AI時代,數據的重要性變得非常突出,但我們必須注意數據的正確性和可靠性,因為數據的錯誤可能導致AI錯誤預測的結果。因此,我們應該重視有效管理和處理大量乾淨的數據,同時也要關注隱私和法規問題,確保數據的合法使用,避免引發法律爭議。我以白草莓病害偵測為例,經由生成對抗網路(GANs)生成圖片訓練演算法,我能將病變偵測的準確率由87.50%提升到 96.88%。另一個例子,梅約診所(Mayo Clinic)和NVIDIA、MGH&BWH臨床數據科學中心合作,使用GANs創建「假」腦部核磁共振掃描。他們發現,通過訓練算法於這些「假」醫學圖像和10%真實圖像,可以成功識別腫瘤,避免昂貴且艱鉅的真實圖像收集。關於企業在AI時代應該如何把握關鍵機會,我以公司部門改造為例,提出了以下步驟。首先,工作人員應該將年度目標與關鍵成果OKR(Objectives and Key Results)置於一旁,優先找出日常工作中的瓶頸。接著,尋找適合的AI工具,或者藉由詢問ChatGPT等技術來撰寫能夠串連API的程式,進行自動化。完成後,進行測試,一旦成功,便可將自動化流程固定下來。我最後強調,AI在現代社會中已變得不可或缺,我們不應忽視數據集中和計算力的重要性,也應更深入地思考和探討如何應對AI的發展和應用,因應未來AI所帶來的變革和挑戰。同時,我們也應更積極地應用AI來解決社會問題,改善人們的生活,期待AI能在未來帶來更多的驚喜,為社會創造更多的福祉和進步。
奈米壓印的初始應用 (一):技術與挑戰
最近Canon發布可以達5奈米製程節點的奈米壓印機FPA-1200NZ2C 。奈米壓印是半導體製造中將線路設計圖案轉印到晶圓的方法之一,另一個為人熟知、也是目前產業界中用以量產的主流方法是曝光機。  奈米壓印的方法其實很簡單,就像用木模板轉印圖案到紅龜粿上一樣。紅龜粿模板是陰刻,1:1的將龜的圖案壓在煮熟的糯米粉團上,壓印後的圖案是陽刻的。這其中沒有像曝光程式中牽涉到光源、光學系統、感光、顯影、蝕刻等複雜的過程以及精密昂貴的設備,所以晶圓處理程序價格相對較低似乎是理所當然。  關鍵的技術是壓印模板的製造,以及前文中以糯米粉團所比擬的高分子樹脂(polymer resist)及整個壓印過程。壓印模板與欲轉印的圖型是1:1,所以在製造模板時要有至少與在晶圓上欲轉印的圖案一樣精細的解析度,這用來塑造模板圖樣的工具自然是電子束(electron beam)。電子束是半導體業用來在光罩上形塑線路圖樣的主要工具。  電子的德布羅意(de Broglie)波長是0.08奈米,也就是說電子束理論上的解析度就是在這數量級。對於任何目的的刻畫,這都遠超過所需要的精度—這比原子都小!  問題是被電子束用來呈像的物質會與電子發生作用,因此電子束刻畫的解析度極大程度的依賴於使用的物質。目前電子束的解析度大約在5~10奈米左右,這對於5奈米製程實際的臨界尺寸(critical dimension)14奈米便夠了。奈米壓印還預告未來可以推進到2奈米製程節點,它實際的臨界尺寸是10奈米,也還在目前電子束解析度可觸及的範圍之內。  以電子束刻畫的模版是母板(master plate),接下來就是大量複製。說「大量」一點也不誇張,因為目前奈米壓印機每小時產量(throughput)就只有100片上下—這大概只比EUV剛推出時的產量稍高,而模板可以使用的次數在幾千次的數量級,大概是幾天就得更換。  在奈米壓印之前,基板需先滴有高分子樹脂(polymer resist),與基板上粘合層(adhesion layer)充分ˇ浸潤(wetting)。之後就是將模板壓在布滿高分子樹脂的晶圓,藉壓力及毛細現象讓樹脂延伸入模板圖形之中。然後用紫外光固化(UV curing)樹脂,取下模板。  奈米壓印過去技術發展的挑戰和上述的壓印程序和使用的物質有直接的關係。過去的幾大挑戰分別為覆蓋(overlay)、產量、缺陷率(defectivity)和粒子。  覆蓋是指元件上下不同層間結構的對齊問題,在奈米壓印製程中會產生覆蓋問題的原因之一是壓印過程中樹脂被壓印而扭曲或變形,以致於上下層之間的相應結構無法對齊。此為奈米壓印過去在技術上常被詬病的地方。 延伸報導Canon新NIL系統成本優勢 有利晶片製造大眾化發展又譬如奈米壓印的產量其實取決於樹脂滴(resist drop)的大小、擴散速度以及跟基板粘合層的浸潤速度,此基本上是材料特性的問題。  這些問題在過去發展的30餘年間主要由物質的改善以及一些輔助的機制,譬如上下層對準校正等,這些問題獲得相當程度的改善,奈米壓印因而逐漸步入量產製程的行列。 (作者為DIGITIMES顧問)
半導體產業獎勵促進條例:適用階段與效果(三)
研究補助金與合作研發中心都是針對半導體技術研究與發展的現金補助,與以稅賦減免的方式來獎勵企業的技術研發不同。政府可以扮演更積極的角色,執行方式也各有變形。 研究補助金最著名的成功案例之一是曝光機光源的研究。此計畫經費的來源是國防高等研究計劃署(Defense Advanced Research Projects Agency;DARPA),90年代半導體產業在尋求下世代曝光機光源的過程中最終選擇EUV,研發後技術移轉,最後在ASML手中經歷20年發展終於完成量產,在目前及未來的繼續微縮之路獨挑大樑。 但是這種大型的基礎科技研發計畫對於處於發展初期的產業和企業並無太大幫助,也沒有辦法執行。能夠按部就班的豐富產業生態、增加企業存活率者,多是短期產品開發或技術的應用發展類型的計畫。  合作研發中心的例子如台灣的工研院,或台灣半導體研究中心。  除了提供技術服務、研究合作、儀器分享、產學合作等預期中的功能外,這類機構還可以有其他至少兩樣重要的功能:蘊育新創,和企業聯手攻關。  在資金環境相對友善的情況下,所研發的接近量產階段技術,及其相關的研發人員,可以分立(spin off)出新創,使得半導體產業的生態環境變得更豐饒。這原是工研院設立當時的初衷之一。在台韓長期競爭的歷程中,這些由研發機構分立出來的新創成為台韓產業發展成截然不同風貌的主要原因之一。這也是在新興國家產業發展之初就可以採取的措施。 另一個措施在產業發展到一定階段才能發揮作用。當半導體企業能夠成功存活下來,下一個重要的關卡在於如何從營業盈餘中產生足夠的經費支持獨立的研發。政府的所有研發經費補助其實都是在協助企業解決研發規模經濟不足的問題。  從接受政府補助到能夠支持自主獨立研發的過渡期間,企業聯合研發可能是較好的方案之一,譬如當初的IST(IBM-Siemens-Toshiba)聯盟共同研發DRAM技術。合作研發中心正好可以當成此種研發聯盟的平台。 人力資源短缺的問題發生於有半導體產業的幾乎每個國家的每個階段,原因各有不同。處於產業發展初期的國家大概都是因為缺少產業歷史因而沒有足夠有經驗的從業人員;而處於產業發展後期的國家有可能是人口基礎已經開始下降,如東亞諸國,或者是產業在其國內薪資的相對競爭力不足。人力資源問題政府必須介入,因為牽涉到公權力相關事宜,如移民政策、教育、勞工等,是以勞動力發展和培訓必須要成為半導體發展政策的一部分。 值得注意的是對於高級人力資源的養成方法。現在的教育體制有半導體專業化的趨勢,譬如半導體學院或微電子研究所。回顧以前半導體的發展歷程之中,雖然工程人員以電機背景居多,但是其他理工背景如材料、化工、機械、資工、物理、化學等的也不在少數。現在的半導體的加值軸線,也已經從單一的製程微縮走向多面向,譬如新材料開發的碳化矽、氮化鎵,以及先進封裝等。這些新方向的開發需要有各類基礎科學的支持。接受傳統半導體技術教育的無疑比較專精,因而能立即投入生產。但是對於未來半導體的發展、創新是否有利則是大有疑問。政府於勞動力發展和培訓的制訂必須依發展階段慎重考慮。  最後要提醒,各類的獎勵補貼政策訂定時也要考慮國際市場的規矩。WTO訂有「補貼與反補貼措施協定」(Agreement on Subsidies and Countervailing Measures;ASCM),禁止特定的補貼行為。譬如第三條(Article 3)中禁止出口補助或優先採購本國產產品,雖然此協議對發展中國家有特別的彈性與考慮。另外,各國亦有反傾銷法律用以對付受政府過度補助的不公平貿易兢爭。  雖然WTO現今對於全球貿易秩序的規範能力已不如當初設立之時,主權國家的行為也不受法律的管轄,但是上述規範的懲處最終會落在接受補貼的個別企業或產業上,訂定產業獎勵促進條例時要先將這些後果考慮清楚。
掌中戲的想像
將數位科技結合人文,呈現人生百態,是物聯網最迷人之處。羅斯福夫人(Eleanor Roosevelt;1884~1962)說: 「我們是命運的傀儡,無法指揮命運,而是被它塑造。」,但是我們仍努力地想掌握人生,敘述生命的故事。在機緣巧合下,我擔任布袋戲西田社的董事,就在掌中戲中發揮想像,布袋戲偶的命運掌握在我的手中。利用物聯網技術,我與羅禾淋教授帶領學生們創作PuppetTalk,能以智慧手套控制機器人偶。於是我們跨越時空將傳統布袋戲偶結合現代舞蹈,敘述我們的故事。PuppetTalk計畫充分運用機器手臂操控實體掌中戲偶,透過動作捕捉手套紀錄舞者在肢體延展時的手部動作,以手勢牽動延伸到身體,因此把動作數據化,數據轉譯控制機械手臂之運動,如此如同再次思考戲偶的「動」到操偶的「姿」,再從操偶的「姿」到身體的「形」。形與意之間,印證偶戲歷史在文化脈絡中的傳承,生生不息。計畫第二階段將加入多軸機械手臂,使操偶動作更趨近原樣,使傳承可以永恆。2022年,PuppetTalk受邀到德國TANZAHOi國際舞蹈節表演。我們打破德國人的想像,跨越東、西方地界,經由廣達電腦提供的5G傳輸,由德國的智慧手套控制台灣的機械手臂及掌中戲偶。我們是如此的貪心,跨越國境,遠距操控。南緯集團旗下愛克(AiQ)的智慧手套更結合羅禾淋教授的機器人偶及虛擬人物Avatar,榮獲2023年日本設計大獎Good Design Award。PuppetTalk利用物聯網(IoT)的智慧手套感測,可以捕捉並紀錄布袋戲大師的手勢橋段,以雲端大數據收集切割手勢橋段,並以人工智慧(AI)重組手勢橋段,最後再以多媒體進行虛實人偶的互動整合。其技術成果發表於國際學術期刊。在論文中,我寫下一首英文詩,並將之翻譯成中文:「掌中乾坤有誰知,演戲瘋來看戲痴;人生好比布袋戲,曲終人散樂自知。」在此時刻,心中喜樂,覺得可以掌握自己的命運。其實一直想塑造我們的,不是命運,而是旁人。羅斯福夫人忠告我們: 「永遠不要讓一個沒有權力說“是”的人告訴你“不”。」這句話的意思是永遠不要讓別人說你不能做好某事,而這件事他們自己卻從來沒有做過。人們不樂見別人成功,看見他們比自己更好,常會阻止別人,並說是做不到的事。我們對自己要有信心,不為浮議所動。經由布袋戲西田社,我亦有緣認識陳耀昌先生(《傀儡花》作者)。他曾笑著說,PuppetTalk和《傀儡花》都有以傀儡影射的深意。《傀儡花》不只反映歷史,也反映世代傳承,甚至反映族群命運及性格。藉由PuppetTalk的資通訊科技,我們企圖掌握自己的命運,尋求永恆的傳承。掌中戲是一個文創科技很好的例子,我們由布袋戲西田社的文創需求,連結到廣達的5G技術以及南緯愛克的智慧紡織技術,有無限想像的空間。