智慧應用 影音
蘋果MR新產品,你給幾分?
眾所期待之下,蘋果(Apple)在WWDC 2023所宣示的混合實境(MR)新產品Vision Pro,基本定價近3,500美元(約合新台幣10.7萬元),超越一般消費者的心理界線。所謂的消費者心理界線,一般是用1,000美元來對消費性電子產品,如電視、智慧型手機等大量銷售的消費性電子產品,做一劃分。以美觀度及觀看舒適度而言,Vision Pro產品外型及重量仍嫌過大;不含外接電池估計就達460公克,真正理想的重量會是200公克以下。就價位上,也遠高於能夠大量銷售的消費性電子產品價位水準。2022年全球售價1,000美元以上的電視佔整體銷售量11%,此一比重預估在2027年會降到7%。換句話說,消費性電子產品平均銷售單價要達到1,000美元以上不容易,Vision Pro未來在價位及成本下降方面,還有很多空間可以加強。再以近年來熱度持續的折疊式手機為例,2022年折疊機平均銷售單價約1,200美元,佔智慧型手機出貨量比重仍低於3%。即便如此, 折疊機均價1,200美元跟這次蘋果MR產品預計售價近3,500美元起跳仍有不小落差(原本市場預估2,000~3,000美元不等),還未達到面向大量消費者的階段。在重量、價位及殺手級應用情境不明的限制下,此次蘋果MR產品的宣示,主要訴求仍為超級果粉及提供開發者為主的初代產品,雖然原本業界期望蘋果新產品可以指引相關產業今後成長的明燈,但目前看來此代產品仍屬初代實驗性產品。但從積極面的角度來看,此代機種採用許多新科技,包括運用多種攝影鏡頭及感測技術的空間運算(Spatial Computing)、超高解析度Micro OLED、具備超越以往運算力的主晶片及協同處理器,確實都是走在2030年元宇宙應用的技術路徑上,真正的成果可能需要好幾年來建構完整的應用環境。至於在同一台裝置能夠切換擴增實境(AR)及虛擬實境(VR)應用,可能也是未來的機會之一。以長期的眼光來看,AR裝置的成長性遠高於VR,估計在2030年之後, AR頭戴式裝置的年出貨量有不小機會超越VR頭戴式裝置,主要原因是AR裝置隨著光機愈做愈小、輕量化後,可以像太陽眼鏡或正常眼鏡般穿戴出去,可發展旅遊景點推薦、商業同步翻譯、工廠及倉庫管理及維修等多元應用;VR因為外型比較突兀,傾向居家娛樂或其他消費性應用,應用面較狹窄。在高階VR產品的成本結構中,以顯示器及處理器所佔的成本最高,可能達到60%以上,其他佔比高的還有攝影鏡頭、感測器、光機及記憶體,2022年絕大多數的VR產品採用Fast LCD顯示器方案,但為因應高解析度需要,蘋果此次採用的Micro OLED技術佔比將會快速提高,包括京東方、三星顯示器(Samsung Display;SDC)都積極發展Micro OLED;主晶片方面,蘋果此次採用的主要處理器M2,已經是2022~2023年蘋果Mac等級,但是否這種高階顯示器及晶片方案所帶來的產品高價位能被消費者接受? 仍是一大問號。以創新性而言,蘋果此次的新產品預示著今後空間運算的新契機,可以拿9分,但是以產品銷售性而言,恐怕得分不會高。 
晶片上的房地產開發—以及晶圓背面的利用(二)
半導體的技術路線路自2016年從原先比較專注於製程微縮的「國際半導體技術藍圖」(ITRS Roadmap),轉換成「異質整合」(Heterogeneous Integration Roadmap)後,CIS首先將畫素陣列和ADC & ISP用WoW(Wafer-on-Wafer)先進封裝方堆疊起來,而晶片鍵合的方式為銅混合金鍵合(copper-copper hybrid bonding;HB)。延伸報導晶片的房地產開發—以及晶圓背面的利用(一)如此晶片堆疊方式讓原來功能、製程各異的模組各自以最適合製程分別製造,得到的結果是製程簡化,總體效能大幅提升,譬如2個堆疊的晶片中可以有較多的I/O連線、電阻下降、功耗減少、速度變快等優點。更重要的是,晶片的矽房地產基地的面積也大幅減少了。HB堆疊技術是目前各家公司推動的研發方向之一。以三星電子(Samsung Electronics)為例,利用HB,他們已展示可以堆疊16層晶片,咸信這是為未來的高頻寬記憶體(HBM;High Bandwidth Memory)做準備。這與前述的3D NAND結構不同。3D NAND 的記憶體陣列是在單一晶圓(monolithic)上製造,而用HB製造的HBM是在多個晶圓上製造DRAM。如果用建築的工法打比方,這比較像預鑄—各層在工廠中各自製作完成,到工地只做堆疊接榫。無論如何,這也大幅縮減工期和矽房地產面積,其他HB具有的優勢也自不待言。CIS做為HI的標竿產品目前已進展到以畫素陣列、DRAM、ISP等3個晶片以HB方式封裝成1個高效能產品的進程。未來可能還再加入人工智慧(AI)晶片,直接用CIS擷取出來的影像信號做邊緣計算。當這些晶片如此多層、緊密的堆疊時,散熱是一個大問題;另一個是電源供應,特別是高效能運算(HPC)或AI延伸的應用。2022年2月Graphcore推出Bow IPU,是將一個專門用於供電的晶圓,與另一IPU(Intelligence Processing Unit)晶圓以WoW的HB技術封裝在一起,解決IPU這類高耗電產品的供電問題。業界更常見的預期是用BS-PDN(Back-Side Power Distribution Network)的方式來解決供電問題。晶片供電首先要進入電晶體,但是傳統的供電電壓是從金屬線上方一路穿透晶片結構到底層的電晶體,不僅佔用空間,而且因距離較遠因而較耗電。BS-PDN是以另一個晶片做為電源供應的來源結構,將原有的晶片打薄背面,讓墊在底下的供電晶片能較近的直接對電晶體供電。如果要供電的物件是已經用WoW組織的多晶片產品,則供電結構可以直接在需要較大供電的晶片(通常是邏輯晶片)背面建構,省略一個襯底晶片。矽房地產的開發利用從微縮、地下室、3D、堆疊,現在連背面也要用上了,寸土寸金。 
晶片的房地產開發—以及晶圓背面的利用(一)
直至今日,晶片的設計與製造都在講究矽晶圓的土地利用效率,稱之為矽房地產(silicon real estate)開發。傳統的晶片製造是將結構從做為基板(substrate)的矽晶圓上一步一步堆疊上去的,乃至於後段製程(Back End Of Line;BEOL)的金屬連線。一開始做為IC的基礎元件電晶體只做一層,像以前的平房,雖然房屋可以櫛比林立,但是整體的建築景觀是平整的2D街景。然後是地下室了。在DRAM發展製程的過程中,電容建構在過往方式之一是向下挖深溝,稱為深溝電容(deep trench capacitor)。電容存在於電晶體的水平面之下,算是地下室吧!這是積極爭取建築容積率的第一步。以上的平房、地下室的想法在人類史前文化就有,要不,到良渚文化遺址去瞧瞧。從電晶體乃至於金屬連線都建構於晶圓的一面,這一面叫前面(front side)。電晶體積體整合程度變高之後,整個晶片就像鄉村變成都市,公共設施如供電網、下水道、交通等就得納入都市計畫。晶片上最重要的公共設施至少包括有電源、信號和熱耗散。電源和信號由最上面的金屬連線層處理,而熱耗散猶如廢水,處理不好晶片便無法持續運作。很久以前處理熱耗散問題,腦筋動到晶圓背面(back side)。功率元件雖然不算是IC,但是由於功率元件高壓、大電流所產生的焦耳熱(joule heat)會讓晶片發燙,勢必要有快速排除廢熱的管道,於是有了BGBM(Back Grounding Back Metalization)的製程—將晶圓底部磨薄,然後鍍上金屬,讓電晶體的散熱快些。這個也可以用城市的基建打個比方:廢熱的下水道。再來是蓋樓了。3D NAND的製程驚才絕艷,只使用4、5個光罩便能做成32層的結構,大幅增加可能儲存的資訊數量。蓋高樓層的自由度一旦打開,建築物的容積率隨樓層數的增加而倍數大幅成長,減輕2D時代晶片地基必須持續微縮的壓力。再下來是處理信號的問題。晶片中傳統的信號大致以電子傳送,管道是製程中的各層金屬連線,至今仍是如此,但是這只是內部的信號傳遞形式。現在的晶片多才多藝,也可以從外界汲取資訊—譬如光,然後再轉成電信號,CIS (CMOS Image Sensor)就是最好的例子,其後也引領著半導體製程創造性的變革。傳統CIS架構與CMOS的建構過程相彷,先做光二極體(photo diode),這算是某種類型的CMOS,其功能是把接收到的光信號轉成電信號,以便後續處理。其上也有一般晶片的幾層金屬連線,更上面有光線進入後的微鏡頭(micro  lens)和濾色片(color filters)。微鏡頭這端叫前端(front side),是晶片的正面(face)。這整個製程就依循CMOS製程的傳統的智慧。但是光進來後先要穿越正面幾層滿布金屬線的縫隙,以及晶片的中層結構,才能抵達對光敏感的光二極體。光的吸收效率很差。從工程設計的角度來看,光經微鏡頭、濾光片後應該先抵達光二極體,直接讓它吸收,轉化成電信號,然後經金屬連線把信號送出去,這才是合理的設計。之所以會變成如此彆扭的結構,乃因半導體CMOS製程在演化過程中,就是將CMOS先置於底部,再將線路逐漸長上去的。無獨有偶,大部分的生物的眼睛也有如此因演化過程產生的工程謬誤。人類眼睛的盲點就是在光敏細胞的演化過程中,視神經先長到視網模前,這個演化的遺跡殘留到以後更複雜的眼球結構之中,視神經阻擋視網膜對光線的部分吸收,以致於接近視界的中心點兩側都有對影像無感的盲點。演化無法重來,但是工程可以重新設計。CIS如此彆扭結構,解決的方法就是從晶片背面著手:光的進入孔道微鏡頭、濾光片從比較接近光二極體(視網膜)的方向進來—就是晶圓的背面,在光二極體處轉化成電信號後再由上層的金屬線路(視神經)送出去處理。這樣的結構不會讓光被金屬連線阻擋干擾,結構合理多了。如此的CIS結構叫背面照明(BI;Back-side Illumination),而老一代的CIS則叫前面照明(FI:Front-side Illumination)。光是一種信號,比之於建築中的線路屬於弱電系統,現在晶片中的部分弱電線路也地下化了,像是光纖或電纜。CIS的結構本來就由多種效能的晶片功能模組拼湊起來,至少包括像素陣列(pixel arrays)、類比線路(Analog to Digital Converters;ADC)、邏輯線路(Image Signal Processors;ISP)等組成,而這些模組在半導體製程看來就是異質(heterogeneous)。因此在異質整合(heterogeneous integration)的年代開始後,CIS的結構創新引領許多矽房地產變革的生發。
物聯網的「剃刀與刀片」
我觀察到,智慧物聯網發展過程,大部分公司都想賣昂貴的物聯網及大數據方案給客戶,本末倒置,不易成功。2016年起,我們發展AgriTalk智慧農業技術,最初的構思,是「剃刀與刀片」模式,希望智慧農業的物聯網硬體能以很低價格,甚至免費的方式提供給農夫,再以人工智慧(AI)、生物有機營養液及害蟲抑制劑等耗材來獲利。要降低價格,AgriTalk的硬體必須很簡單,並靠軟體來彌補硬體的不足。例如,溫度、溼度等感測器必須很便宜,其準確度會漂走,就要靠統計演算法來自動校正。農夫種的農產品,我們以契作方式回收,農夫便有不錯的收入,造成雙贏局面。這種「剃刀與刀片」模式除了要有永續維護的智慧技術外,還有一重要前提,即慎選農作物(我們選擇薑黃及白草莓),要有穩定行銷管道。原始的「剃刀與刀片」(Razor and Blades)經營策略出現於20世紀初期,並非如AgriTalk般創造雙方的共營獲利模式,而是以「搭售」(Tied Products)方式,將某一基本商品(例如剃刀)低價販售,以便大量販售另一種相關消耗性商品(刀片),只思考如何賺客戶的錢。在資訊領域,使用「剃刀與刀片」策略最有名的例子是印表機(剃刀)和墨水匣(刀片)。今日雷射印表機的技術是全錄(Xerox)研究員Gary Starkweather於1969年的發明,構想來自於影印機。影印機的發明人是Chester Carlson。Carlson是菲立普‧馬洛里(Philip Rogers Mallory & Co.)的專利部門經理。因其工作的特性,時常碰到文件需謄本的問題。為了方便將文件謄本,他研究當時流行的各種複印文件的技術,包括攝影術、藍圖法、重氮法等。結論是,這些技術都不理想,皆需要使用一些溶劑而且製程很麻煩,因此決定親自動手來找更好的方法。Carlson把家中廚房當作實驗室,一度招致老婆翻臉。不過他仍然契而不捨,終於在1938年發明全世界第一個乾式印刷程序(Dry Printing Process),稱為電子攝影(Electrophotography)或Xerography。Xerography是希臘字,意指乾寫(Dry Writing)。卡爾森用乾式方法產生出來的複製影像即是影印機的基礎,於1950年被全錄公司成功的商業化。之後,雷射印表機將影印機的販賣策略發揚光大,賺取客戶不少銀兩。我對AgriTalk的期望,則更進一步進化,希望能創造雙方的共營獲利模式,幫助農夫大幅強化其謀生技能。
中國停止採購美光產品可能的市場反應
2023年5月21日中國國家互聯網資訊辦公室發布消息稱,美光(Micron)在中國銷售的產品未通過網路安全審查。按照中國《網路安全法》等法律法規,中國境内關鍵資訊基礎設施的營運者,應停止採購美光產品。針對這件事,南華早報在2023年5月29日已做評論。在中美科技對峙的氛圍下,美國的科技公司遭逢此種裁定是意料中事,美光成為箭靶是因為「美光是美國對中國不僅提起多次智慧財產權訴訟,還經常遊說美國反對中國的大型晶片產業公司」。南華早報這一部分的陳述離事實並不太遠,美光是全世界記憶體廠商中最常使用非商業競爭手段打擊同業的。專利侵權、反傾銷(anti-dumping)、反補貼(counter-veiling)等手段使用得淋漓盡至,充分利用美國在國際政治的力量,以及過去是世界重要半導體市場的主場優勢。世界上沒有任何一家記憶體公司能倖免於此困擾。即使其本身亦有涉案在DRAM反壟斷案中,美光也以其較熟悉的反壟斷局寬大處理計畫(Leniency Program)最後安然脫身。美光如此常態行為,的確較容易成為反制的對象,但是中國政府是否真正以此因素為主要考量而下此決定,就不得而知。中國官方宣布的根據或理由令人費解,主要是因為DRAM的產品特性,它是「大宗商品(commodity)」。DRAM產品有世界統一的規格,像DDR4、DDR5、LP DDR4等介面規格,同一規格的產品,其電壓、傳輸速度、訊號次序等規格是完全一樣,都是由JEDEC這個組織統一制定的。理論上,一家公司某一特定介面的產品完全可以被另一家公司相同介面的產品直接插拔替代。如果美光的產品要刻意增加其他公司沒有的「功能」,這些增加的線路勢必在產品的成本上重懲美光。所以說這個根據或理由,業內人士很難理解。如此措施會引發哪些市場反應呢?當前的記憶體市場由於PC和手機市場的低迷,處於極端的不景氣狀態之中,這是整個產業現在共同感受。這個裁定對於美光的短期衝擊雪上加霜是顯而易見的。但有幾個理由會讓這個裁定的影響可能沒有想像中的嚴峻。第一,是美光的前置準備。這幾年中美科技的對峙已經持續多時,特別是美光在與晉華進入訴訟程序之後,美光不可能沒有應變計畫,否則就是經營得太漫不經心了。第二,是美光傳統的市場策略。美光在很長一段時間內的市場策略是極大化利潤,而不是保持客戶的黏著度,理由是前述的DRAM是大宗商品這一原因。由於記憶體是大宗商品,很難由產品的差異化來提升顧客的忠誠度,利潤極大化是合理的市場策略。基於此一市場策略,美光銷售體制使產品銷售對象轉換的彈性即相對較高。第三,還是大宗商品的特性所導致的。DRAM由於可相互替代,對於系統公司零件轉換成本較低,只要有價格差距就有轉換誘因。所以此措施淨效應就是記憶體各寡佔公司與顧客的重新議價與配對洗牌。顧客與供應商重新接頭、議價需要交易成本,也需要時間,所以將延緩整個產業的復甦時間。對於個別廠而言,當然會有所損失,但是還不致於窒息。大宗商品嘛,如水銀瀉地,無孔不入的。要不,俄國石油被那麼多國家抵制,不也賣得好好的?
從半導體設備市場規模看產業變化
眾所周知,在美中貿易戰及新冠疫情後,國家安全及供應鏈安全成為各國亟待強化的關鍵課題,半導體製造能力成為施政重點。在此背景下,2021年及2022年全球半導體設備市場規模前所未見的連2年突破1,000億美元規模,分別達到1,026億美元及1,076億美元的規模。我歸納整理國際半導體產業協會(SEMI)以及日本半導體裝置製造裝置協會(SEAJ)發布的原始統計數據,探討半導體產業的結構變化。可以看到台、韓、中三地是全球最大的半導體設備市場,2020~2022年三地合計都佔全球市場7成以上。中國雖在2000年發布十八號文及中芯、宏力建廠,但其後投資建廠的規模在全球仍不算是「大咖」,直到2014年發布「國家集成電路產業發展推進綱要」並啟動大基金大舉投資半導體供應鏈各環節,產業發展動能才真正被點燃起來。中國到了2018年,首度突破100億美元的市場規模,成為與台灣及南韓鼎足而三的大市場。2021與2022年這三地規模更都突破200億美元。   另北美、歐洲、日本及其他(以色列及星馬等)地區,2020~2022年半導體設備採購規模都呈現逐年增加的趨勢,但仍與台韓中三地有非常大的差距。若看2018~2022年的合計設備銷售額,可看到在美中貿易戰衝擊下,中國是多麼積極地採購設備建制產能;美日投資額雖較之前有所增加,但在規模上仍遠遠不若台韓中三地;歐洲的投資力道則更不及美日兩地。若觀察前三大半導體設備廠的營收結構,台韓中三地各佔應用材料(Applied Materials)2022會計年度(2021/11~2022/10)公司營收的24%、17%、28%;佔東京威力科創(TEL)半導體事業營收的19%、16%、23%,均以中國為最大市場。可以想見2022年10月美國祭出出口管制措施,之後又要求日荷同步配合對半導體設備商的衝擊。高階微影設備領導業者ASML於2022年則以台灣為最大市場,佔比達38%,南韓次之,佔29%,而中國僅佔14%,相對受影響較輕。日本首相岸田文雄2023年5月邀請半導體產業龍頭業者齊聚官邸,試圖強化半導體供應鏈,而美國在2022年推出《晶片與科學法案》(Chips and Science Act)後,迄2023年5月申請獎補助業者已超過300家,6月負責晶片法中研發計畫管理的晶片研究與開發辦公室主任亦已到任。設備採購是產能布建及產品服務銷售的先期投資,觀察過去這幾年的半導體設備市場觀,台、韓、中在產能與未來幾年的銷售上,仍可望具有高度成長動能,但在美日歐的強力扶植下,各地都逐漸建立起相較過去更完備的半導體產業鏈,國際上「去全球化」的發展態勢下,台灣業者迎來的是「國際化」的挑戰,若能通過考驗,未嘗不是進一步壯大的契機! 
國防領域的量子技術
量子技術是將量子物理原理應用於實際情境的技術。費曼(Richard Phillips Feynman;1918~1988)是量子計算的奠基者之一,他提出利用光子進行計算的概念。其貢獻促進量子計算的研究和發展,為量子計算領域帶來卓越貢獻。在軍事領域中,量子技術一直是國防部門關注的重點。整體而言,量子技術尚未完全成熟,但它可能對未來的軍事感測、加密和通訊產生重大影響。量子應用涉及許多關鍵概念,包括疊加、量子位元和糾纏。其中最具挑戰性的應用是量子計算,這是一個令人驚嘆的夢想,可以實現無限計算能力,突破當今物理世界的限制。然而,計算是否有速度上的極限呢?如同光速限制在不改變時間的情況下穿越太空的能力一樣,是否存在著阻礙計算速度超越理論上最大值的錯誤糾正限制?建立一個有用的量子計算機需要處理超過可觀測宇宙中亞原子粒子數量的連續參數。目前還沒有確定如何操作如此龐大的量子系統,以及如何同時控制其誤差。 因此,我們應該專注於量子感測技術,以加速成熟的國防應用。量子感測技術可用於偏遠地區的全球定位系統(GPS)定位和其他導航工具,還可用於檢測電磁輻射,提升軍隊的電子戰能力。據美國海軍研究所(US Naval Institute)報告,量子感測技術可提升潛艇的探測能力,尤其是對於匿蹤潛艇和物體探測的能力,效能將超越過去的雷達技術。 中國電子科技集團在2018年公布其開發的量子感測原型裝置,據稱能夠探測飛行中的匿蹤飛機。美國國防科技巨頭Lockheed Martin,聲稱能夠使用量子羅盤(Quantum Compass)來改善美國海軍的導航能力。這種量子羅盤是由具有「氮-空缺中心」(Nitrogen-vacancy center)原子缺陷的微型合成鑽石製成的。當受到雷射照射時,其發出的光強度會根據周圍的磁場變化;透過地球磁場,這種光的變化可以提升導航能力,尤其是在極其偏遠的地區。總結來說,量子感測器具有潛力應用於情報、監視和偵察領域。成功開發和部署這類感測器可能會帶來潛艇探測能力的重大改進,甚至能夠對抗和摧毀海上核威懾力量。由於量子感測器對環境干擾非常敏感,軍事人員可以利用量子感測器來探測地下結構或核材料。此外,量子感測器的高靈敏度還有可能幫助軍隊探測電磁輻射,增強電子戰能力,並有助於定位隱藏的敵方部隊。 
競爭優勢加持 抗逆風的2023年半導體列強群像
近期人工智慧(AI)話題掀起熱潮,不過2023年全球半導體市場仍難脫衰退,主要受到記憶體市場恐將年減30%以上所拖累。非記憶體部分,幾家大廠包括英特爾(Intel)、超微(AMD)、高通(Qualcomm)、聯發科第1季營收均呈衰退。至於晶圓代工龍頭台積電,受到全球眾多IC設計公司、IDM業者所依重,但前4月累計營收亦較2022年同期減少1.1%,不如2022年時英勇。觀察2022年全球前廿大半導體業者,在2023年的年度營收仍有機會較2022年成長者,估計只有博通(Broadcom)、NVIDIA、意法半導體(STM)、英飛凌(Infineon)、Microchip等5家。其中,前兩者與資料中心有線網路晶片及AI晶片相關,後兩者則主要與車用半導體、工業用半導體有關。博通的半導體事業主要在有線通訊,特別是資料中心用網路通訊半導體,因此較不受一般消費應用如智慧型手機需求衰退等因素的影響。另外,博通的客製化晶片在雲端服務業者也佔有一席之地,如Google的雲端晶片TPU即採用博通的設計方案。隨著主要雲端服務及網際網路業者如亞馬遜(Amazon)AWS、微軟(Microsoft)及Meta紛紛以自研晶片提升服務效率及降低成本,博通及對應的晶圓代工業者台積電均能受惠。2022年前廿大半導體業者中,NVIDIA的2023年營收成長率預期將是最亮麗者。主要原因是2022年第4季以後,生成式人工智慧(generative AI)應用如火如荼地發展,在訓練模型方面,算力需求快速增加,其A100/H100在伺服器用GPU市場備受矚目,A100 GPU單價已高於一般的伺服器,H100 GPU更是A100 GPU的數倍。觀察前廿大半導體業者對第2季自家營收展望,NVIDIA在營收季增幅度及年增幅度均明顯領先。必須一提的是,NVIDIA純粹半導體營收估計僅佔整體營收的6~7成上下,高單價的伺服器系統(如DGX A100、DGX H100)、軟體解決方案的銷售金額佔比持續提升中。NVIDIA未來加速轉向AI生態系解決方案業者,不能單純以半導體公司看待。儘管車用半導體缺貨吃緊問題逐漸緩解,但對於優質產品供應商而言影響相對小,預期2023年全球車用半導體市場仍可創造近10%年增率,相對地,2023年整體半導體市場(包含記憶體)則恐年減8~10%。2022年英飛凌為第一大車用半導體業者,也是第三大工業用半導體業者。由於車用半導體及工業用半導體供應關係不輕易更換,在信賴度及品質上領導大廠仍佔競爭優勢。2023年英飛凌隨著該公司車用半導體新產能的進入量產,加上在第三類半導體碳化矽(SiC)的發展也有所成,在電動車、低碳化、高能源效率化三大趨勢下,英飛凌仍然處於順風的態勢,預計營收年增率有望突破10%,在前20大半導體業者營收年增率上有機會排第二名。意法半導體在2022年的車用半導體市場佔有率居第三大、工業用半導體市場佔有率為第四大,而車用及工業應用市場也是2022~2025年成長率較強勁的2個主要市場,優於通訊及消費性電子應用表現。意法的新建半導體產能在2023年以後陸續投產,可紓解過去該公司在市場上的供給不足。意法核心競爭力之一,乃掌握許多專屬製程,先進製程則委託台積電等業者代工。Microchip在2022會計年度營收的75%在工業用、資料中心與運算、車用,因此在2023年受到消費性電子及手機市場衰退的影響也較小,該公司與客戶簽有長期供應合約,且在微控制器(MCU)市場有其地位,不易受景氣起伏衝擊。總體而言,半導體市場雖然起起伏伏,但長期需求仍是向上,上述5家業者掌握雲端服務/資料中心、AI、電動車及ADAS、工業應用高效率化的大趨勢,能在半導體市場衰退年仍然逆勢成長,有其核心競爭優勢所在。本文探討僅限前廿大業者,若把眼光擴大至半導體供應鏈,美系EDA兩大龍頭業者近10年來營收未曾衰退,2023年也將持續成長,也是值得關注。
人工智慧的啟示
圖靈獎(Turing Award)得主Geoffrey Hinton在日前公開討論人工智慧(AI)的風險。AI「往往會從分析大量數據中學到意想不到的行為」。這並非意味著具有自主意識的AI會摧毀人類,而是我們無法預測AI的行為,特別是當個人和企業允許AI系統不僅生成其自身的代碼,而且在自己的計算機上運行這些程序時,Hinton擔心「有一天,真正的自主武器將那些殺手機器人變成現實」。第一個實際的AI系統是由Edward Feigenbaum及Raj Reddy實現,稱為「專家系統」,是一種智慧型的電腦程序,能運用知識與推論來解決只有專家才能解決的複雜問題;他們也因此一貢獻榮獲1994年的圖靈獎。然而,許多系統需要模擬的參數甚多,至今仍然無解。可見計算機模擬的應用博大精深,即使今日AI技術突飛猛進,有許多題目仍值得深入研究。圖靈(Alan Turing,1912~1954)在1950年發表一篇重要論文〈計算機與智慧〉"Computing Machinery and Intelligence",首次談論到AI,並提出圖靈測試(Turing test),為資訊領域創建智慧設計的標竿。圖靈測試指的是,如果一台計算機能夠欺騙人類, 相信它是人類,那麼它就應該稱為智能計算機。AI緣起於模擬人類行為,自然也常用於社會學。密西根大學的政治學教授Robert Axelrod,在1980年代進行一連串電腦模擬實驗,找一群專家寫出不同電腦程式,模擬人類行為,讓這些程式互動、合縱連橫,看哪個程式最後會勝出。這些程式有些模擬「金律」,有些模擬「銀律」,有些則模擬「鐵律」。所謂「金律」(Golden Rule),語出《新約》7:12「無論何事、你們願意人怎樣待你們、你們也要怎樣待人」;「銀律」(Silver Rule),語出《舊約》21:24「以眼還眼,以牙還牙,以手還手,以腳還腳」;「鐵律」就是「己所不欲,先施於人」,外在表現是「先下手為強,後下手遭殃」。結果最成功的是模擬「銀律」的Tit-for-Tat程式。這個程式一開始採取合作,若對方也肯合作,接下來則仍採合作策略;若對方吃你豆腐,下一步你就佔回便宜。在實驗中,實施金律的程式一敗塗地,屍骨無存,可見咱們先總統蔣公介石對日本「以德報怨」的做法是行不通的;實施鐵律策略的程式一開始也有不錯的表現,但長期下來,所有被它吃豆腐的人不是死了,就是躲它遠遠的,它最後也沒戲唱。有一個鐵律例子,就是石油大王John Rockefeller(1839~1937)。他專耍先下手為強的手段,整垮所有對手,成為最有錢的人。但他的手段未免太狠,大夥都不敢恭維。Rockefeller也知道自己以前做事實在不上道,因此在退休後的餘生,致力於慈善事業補過。然而,他過去的作為仍然禍貽子孫,他的後人能力再強,條件再好,想選總統,至今都選不上。延伸報導從Google搜尋趨勢看三大AI技術浪潮
米德教授奇人奇事
在Chris Miller所著《晶片戰爭》(CHIP WAR: The Fight for the World’s Most Critical Technology)一書中,多次提到Gordon Moore(1929~2023)與加州理工學院(California Institute of Technology)米德教授(Carver Mead)的互動。在1965年,當Moore還在快捷半導體(Fairchild),手繪出從1959~1965年每一矽晶片中電晶體成長數字,總計只有5點數據,並預測未來成長會依照每1.5~2年以1倍的速度增加。Mead教授當時是快捷半導體的顧問,隨即將此稱之為「摩爾定律」(Moore's Law)。Mead曾回憶,當時他正在研究半導體內電子的量子穿隧效應(tunneling effect),在此事後沒多久Moore就問他,穿隧效應要在很小的尺度才會發生,那電晶體可以做到多小的尺寸?Mead花了些功夫答覆此問題。1968年,Mead提出電晶體尺寸微縮理論(scaling),也就是在MOS電晶體的閘極長度微縮同時,每一電晶體所需耗用的功率是與長度成平方的下降,同時電晶體速度卻等比例增加—即電晶體效能是隨著電晶體閘極長度微縮,而呈現3次方的改善。當Mead在學術會議上,報告MOS微縮理論時,並預測未來1個晶片上可以有上億個電晶體存在,並沒有多少人相信Mead的理論。當時認為在這麼小的尺寸下,光是所產生的熱即足以燒毀整個電晶體。事實證明Mead是對的,Moore's Law橫跨超過50年時間,最主要的基石在於尺寸的微縮,而Mead的理論提供Moore's Law的理論基礎。Mead在1970年代初期,即洞悉未來晶片上可以製作出眾多的電晶體,代表將擁有龐大的算力,其也因此建議英特爾(Intel)高層,發展電腦所需的晶片。不過,如何有自動化的IC設計工具,處理日益複雜的電路設計,成為一個關鍵議題,Mead的研究隨即轉向IC設計。Mead於1970年在加州理工學院開設VLSI課程,在課堂上並將學生所設計的各式IC,用統一的光罩,手刻出布局圖,最後完成矽晶圓的製作。這比國內晶片設計中心對學術界的服務,整整早了20年。Mead與Lynn Conway於1979年合著的Introduction to VLSI System,更是IC設計者手中的聖經。Mead在1970年代初期,即投入Si compiler的研究,這是電路模擬及布局圖自動化的濫觴,造就現在EDA工具的產業。Mead更於1979年提出未來半導體產業,會由多數的IC設計公司(fabless),及較少數目的晶圓廠(foundry)所組成。這與同時期張忠謀先生,在德州儀器(TI)內部所提出foundry概念,不謀而合。筆者在美國求學時,即久仰Mead大名。因為筆者的研究題目是化合物半導體的微波高速元件及積體電路,第一個發明出此類元件(1965年出現的GaAs MESFET)的正是Mead。化合物半導體很難成長出優質的氧化層,不像矽晶圓有高品質的二氧化矽,所以化合物半導體只能利用金屬作為閘極,直接接觸到半導體。此接觸(junction)因為材料不同,衍生很多的介面缺陷,因此電子幾乎無法在通道內(channel)運行。Mead很技巧地利用此接觸所產生的空乏區(depletion),來控制電子數量,也由於電子遠離介面,所以能夠自由地運行。至今我們在無線通訊所使用的高頻元件,其運作方式依舊是使用Mead的原創。Mead在2000年後,又回到基礎物理研究,尤其是量子的電動力學及重力理論。Mead似乎可以在不同的學術領域,來去自如,悠遊自得。Mead於2022年榮獲日本的京都賞,獎金是5,000萬日圓。京都賞是由京瓷(Kyocera)已故創辦人,稻盛和夫於1984年所創立,獎勵全球對於前瞻技術、基礎科學及人文藝術等3個領域有傑出貢獻人士。華裔科學家鄧青雲博士,發明有機發光二極體材料,於2019年獲得京都賞;中國清華大學資訊科學教授姚期智博士,也於2021年獲此殊榮。Mead的學術研究,由基礎的半導體元件,到IC compiler的原創,以至於VLSI設計,對於半導體相關的領域做出重大貢獻,在學術界還無人能出其右。他的洞察力及遠見,更激發整個半導體產業的發展,終究造福大眾。