智慧應用 影音
EVmember
Event

先進微影技術發展(一):既有設備路徑的延伸

圖為ASML EUV微影設備運作透視圖。

微影技術是半導體產業用以定義精細圖案的主流手段,目前最先進的技術是極紫外光(EUV),最近的量產設備為ASML 的TWINSCAN NXE:3600D。使用的光源是由二氧化碳雷射打到錫(tin;Sn)電漿(plasma)後,產生13.5 nm的極紫外光。數值孔徑(Numerical Aperture;NA)為0.33,這個數值反比於解析度(resolution,或為Critical Dimension;CD);微影技術中NA愈大愈好。其解析度為13 nm,生產能力(throughput)每小時可以處理160片晶圓。這機型支援7奈米、5奈米製程的量產。

有一個常有的誤解,是5奈米製程其實並不代表其解析度恰好為5 nm,這數字是技術節點(technology node)的名稱。過去此數字的確是代表此一製程的臨界尺度,譬如邏輯製程的閘極長度(gate length)或者DRAM的半金屬間距(half metal pitch)。

但是現在電晶體3D化、製程變得複雜,節點的命名代表的是依照摩爾定律演化曲線投射的電晶體數目、電晶體開關速度、功耗的等效名稱。

微影技術的後續發展呢?據ASML最近的財報表示,改進的方向是往增大NA的方向,從目前的0.33增大為0.55,後者稱為高數值孔徑(high NA),可以進一步提高解析度。另一個方向是增加生產能力至220片,降低晶圓廠生產成本。

理論上一個光源的解析度為其波長的2分之1,譬如EUV現在的光源波長為13.5 nm,理論上其單次曝光的殼達到的最佳解析度約略小於7 nm(重複曝光可以進一步改善解析度)。用較短波長的光源藉以達到更高解析度是以前理所當然的路徑,微影機的光源一路從g-line(436 nm)、h-line(405 nm)、i-line(365 nm)等可見光進展到KrF(248 nm)、ArF(193 nm)的深紫外光(DUV),主要的進展都是靠縮短光源波長來改進解析度的。

但是從DUV遷移到EUV牽涉到結構上重大的變革,有2個重要因素。

在光源方面,沒有自然的原分子可以被激發後釋放出EUV,所以必須以二氧化碳雷射去多次激發錫電漿。另外,EUV被幾乎所有的東西所吸收,包括空氣以及石英(以前用來做光罩的材料)、透鏡等,所以所有的EUV光學系統都得改成在真空中以鏡子反射式的呈像,這是一個顛覆式的重大變革。

EUV的研究肇始於1990年代初,當時DUV的半導體量產機台還未導入量產呢!之所以要花20幾年的時間來研發,因為是對一個更精密系統的重新創造。

而且目前的EUV是一步到位的研發。EUV的定義是波長落於10~210 nm之間的光,目前EUV的波長13.5 nm已在EUV定義的邊緣,波長再短就是x-ray了。到那時候又是另一套全新系統的開發。X-ray 也會被空氣吸收,而可能的光源之一是1990年代就提議過的同步輻射,那可又是一場全新的遊戲。

所以沿著光學微影方向發展的下一步呢?比較大的可能是超高數值孔徑(hyper NA),NA=0.75,這可以讓解析度比目前至少再提高個2倍。配合其他常用的製程手段,譬如多重曝光、過度蝕刻等,看能否接近矽原子的天然解析度極限。

這個路徑雖然是演化式的,但是研發經費仍然是天文數字。後面有沒有足夠的高階應用來分攤這前頭的龐大研發經費,這是個經濟問題。

 

現為DIGITIMES顧問,1988年獲物理學博士學位,任教於中央大學,後轉往科技產業發展。曾任茂德科技董事及副總、普天茂德科技總經理、康帝科技總經理等職位。曾於 Taiwan Semicon 任諮詢委員,主持黃光論壇。2001~2002 獲選為台灣半導體產業協會監事、監事長。