智慧應用 影音
Microchip
ST Microsite

晶創台灣方案評論 (二)

電力需求是台灣發展先進半導體項目一個必須嚴肅看待的課題。

第二項技術議題是「加速產業創新所需異質整合及先進技術」,這個很明顯是對上述生成式人工智慧(generative AI)晶片及應用的支援項目。 

延伸報導名人講堂:晶創台灣方案評論 (一)
異質整合(heterogeneous integration)是將用不同製程、材料製作的晶片透過先進封裝整合在一起,提升系統功能與表現效能。目前生成式AI及其他的AI應用是用2.5D先進封裝,將GPU晶片與HBM3或HBM3E封裝在一起,以提高頻寬、提高速度。再下個世代的HBM4或許可能採用銅混合鍵合(copper hybrid bonding)的3D先進封裝或者用矽光子以連接GPU與HBM,進一步提高速度和頻寬,這些也都是異質整合和先進封裝的發展方向。 
 
這個技術方向自然是用來支援生成式AI晶片的發展,如果生成式AI的發展方向是正確的話,異質整合的方向也是正確的。異質整合還有自己的重要性,以前ITRS(International Technology Roadmap for Semiconductors)用來標示技術進展的計量是製程微縮的節點,2017年後產業界就用Heterogeneous Integration Roadmap,顯示每年可以被異質整合進封裝的元件種類/形態/功能。

這意味著異質整合本身也成為半導體增加經濟價值的驅動力之一。 
 
這個項目中的異質整合技術—特別是與生成式AI高度相關的矽光子與銅混合鍵合—台灣的半導體產業早已提前投入並取得相當成果。 
 
異質整合的晶片設計比以前單一晶片的設計要複雜許多。譬如銅混合鍵合的晶片設計由於上下兩片晶片—譬如GPU與DRAM—尺寸要一樣,而且金屬接點要互相對應,2個晶片的協同設計是基本要求。此時的設計工作會牽涉整個系統而非單一晶片,新的設計輔助工具也是需要的。台灣半導體產業在這方面也提早準備了,譬如聯電與Cadence於2022年初發布完成聯合開發設計工具的消息。 
 
至於人力資源與投資環境的問題,這在台灣已是沉疴,在此只加注一點。 
 
從方案中的人力資源方案來看,顯然政策上已經清楚認知台灣人口基數的長期下降才是目前人力資源不足的主因。這一點是顯著的進步。清楚問題的根源才有機會提出正確的解決方案。 
 
對這個方案有3個基本問題,第一個問題是方案的提出時間。2023年並不是常規的10年科技政策出台的年度,而且此屆內閣即將任滿。於即將任滿的時間制訂一個長達10年的政策,在行政倫理上合適嗎? 
 
第二個問題是經費。10年新台幣3,000億元的經費是個不算小的金額,如果以每年的平均經費來計算,此方案在年度科技總預算的佔比高達30%。這樣的專案預算編列只有2種結果:一是排擠其他常規項目的空間、一是需要增加新預算。如果是增加新預算,長期計劃就要另覓長期的新財源。這些在方案中以及相關的訊息揭露都沒有看到。

問題是預算來源到底是那一種?削減其他專案預算?還是要開譬新源,而源頭在哪? 
 
最後一個是關於電力的問題。目前很多的生成式AI晶片設計在效能與節電—散熱之間的選擇,都大幅的傾向追求效能,而將散熱的問題留給製程與封裝去解決,是以連晶片水冷這樣複雜的方案都也列入考慮了。生成式AI很耗電嗎?當初ChatGPT剛問世時,各大雲端伺服器都遭遇耗電驟升的窘況,而那只是淺嘗即止的試用期。 
 
如果這方案真的很成功,在生成式AI晶片的製造應用都順利推展到各領域,算過電力供應要怎麼成長才能支應嗎?這些電力哪裡來? (作者為DIGITIMES顧問)

現為DIGITIMES顧問,1988年獲物理學博士學位,任教於中央大學,後轉往科技產業發展。曾任茂德科技董事及副總、普天茂德科技總經理、康帝科技總經理等職位。曾於 Taiwan Semicon 任諮詢委員,主持黃光論壇。2001~2002 獲選為台灣半導體產業協會監事、監事長。