各種機器學習模型的成本將因為半導體的運算能力而出現更好的價格誘因,一旦使用價格降低,使用者必然大幅增加。使用人工智慧(AI)將成為公私領域日常工作的一環,商品化的結果,就真會是「AI的iPhone時刻」來臨。一旦Open AI成為常態,各種生成式的應用都需要NVIDIA資料中心與專用晶片,業界的相關效益可想而知。
與傳統伺服器不同,AI專用的伺服器有80%是使用GPU,10%使用CPU,而一般資料中心的伺服器,60~70%使用CPU的運算能力。以NVIDIA的DGX伺服器建構組合為例,用8顆GPU、2顆CPU組成,GPT 3.5就需要1萬顆A100晶片,而一般學習型的伺服器只需要500~4,000顆的GPU。
大家都把焦點放在台積電,確實台積電是僅次於NVIDIA的贏家,而且這一波大潮才剛剛開始而已。NVIDIA最早推出的A100,在Hooper 100推出後,仍然具有很大的吸引力,那為何NVIDIA可以一枝獨秀呢?
2013年以前,資料中心的投資規模一年大約550億美元,但真正大幅成長是在2013年以後。2017~2022年間,資料中心的年均成長達到11.8%,而估計未來5年,NVIDIA規格的資料中心,就算只以維持目前的市佔率估算,也可以有年均20%以上的成長率。樂觀估計者,甚至認為年均可以達到40%以上。
NVIDIA吃肉,台廠喝湯也可以獲利豐厚。現在台廠只要跟繪圖晶片有關的,生意都做不完,市場傳言緯創、鴻海、廣達都接到大單,而黃仁勳在CPMPUTEX期間,去拜訪微星、技嘉,也與聯發科攜手開創智慧座艙的商機,伺服器之外,電動車、車聯網的商機還在等著!
IDC指出,2023年AI與相關軟體的市場是5,192億美元。Gartner則說,2020年時,AI佔公司IT支出比重是7%,到2023年會增加到10.5%,而2026年是13.8%。這是以全球軟體市場當分母的推算,那麼軟體商機背後的硬體世界呢?
幾年前黃仁勳曾說:「AI會吃掉軟體,軟體會吃掉硬體」的豪語。我認為黃仁勳的話說對了一大半,硬體是無可替代的,特別是晶片,最大贏家仍然是硬體製造業,而與伺服器、資料中心相關的事業體,也會有龐大的商機。