黃仁勳在台大畢業典禮上演講提到,1984年他從大學畢業,迎接的是PC起飛的年代,而2023年是「人工智慧起飛(AI)的年代」,期望今年畢業的學生可以掌握時代的契機,成為浪尖上的英雄。1984年底,我唸完研究所,1985年回到台灣迎接的也是PC元年!
創業的過程總是艱辛的,「誠實的面對問題」是黃仁勳在台大整場演講的精華。與Sega的合作,其實技術上碰到挫折,但卻厚著臉皮要對方付錢;與張忠謀的互動,成就了雙方25年的革命情感。驕傲的創業家,也有彎腰請人幫忙的時刻,這些心理上的掙扎只有創業家可以體會!
黃仁勳說:就像是1984年PC濫觴的時代,2023年是AI真正商業化的時代,而這背後有很多軟硬整合與硬體製造的機會。在Google搜尋引擎可至之處,大概有超過6成的數據是來自英語體系,中文只佔1.5%,繁體字更僅有0.01%,換句話說,如果以台灣本土的資訊、數據創造普遍性的價值,可能是緣木求魚,不可行的策略。
但反其道而行,如果能在「孤島」上圈地自肥,專門找豐腴的土地耕作,而這塊土地還有往外擴張的空間,可行嗎?我做的就是這樣的實驗,我認為不僅可行,而且是AI創新與他人差異化的避風港。
這個市場小到網路大腕們不僅視而不見,而且希望拉攏我們這些地頭蛇,加速事業模式的落地與實踐。這些離經叛道的做法,可能讓專業人士懷疑可行嗎?路是我走出來的,我知道有多難,但別人認為不可行的,您也一定沒機會!
「大數據是AI的成敗關鍵」的說法,大致是正確的,但很多人也認同,數據總量與品質之間的關係很關鍵。過去將數據資產的重心放在資訊儲存、高速運算,現在「資訊的交換」也非常重要,這牽涉到交換的效率、條件、定義、對象等問題。
由於現在的網路社會,數據是雙向互動,Input的品質當然影響到Output的結果,長期累積的價值、客戶的信賴都是成敗關鍵。
其次,如何從累積大數據的過程中,找到具有商業價值的副產品,絕對是台灣這種中小型國家新創企業要深思的問題。這些副產品或技術趨勢,如何與台灣優勢結合,才是我們應該思考的問題。
大趨勢背後的副產品、邊緣服務,這點商機不值得主流業者來經營。難度高,又看不上眼,難怪我們活得好好的!