智慧應用 影音
Microchip
ADI
林育中
  • DIGITIMES顧問
現為DIGITIMES顧問,1988年獲物理學博士學位,任教於中央大學,後轉往科技產業發展。曾任茂德科技董事及副總、普天茂德科技總經理、康帝科技總經理等職位。曾於 Taiwan Semicon 任諮詢委員,主持黃光論壇。2001~2002 獲選為台灣半導體產業協會監事、監事長。
延長摩爾定律的二維材料發展現況與挑戰
去年3月ASML在其投資者會議發表了一份半導體產業邏輯與記憶體的技術進程,預計在2022年半導體業界將到達3nm的製程。之後呢?2nm要到2030年,一個以往的典型一個世代進程居然要花8年之久!
2019/4/18
具潛力的奈米金屬導線材料:砷化鈮
這幾年奈米材料的進展在半導體及相關領域迅速開展,速度令人眩目驚心。先是去年下半年發現拓樸絕緣體(topological insulator)銻化鉍(BiSb)可以用來做為SOT MRAM的磁化翻轉機制導線材料,數量級的大幅降低所需電流與功耗、提昇寫入速度。3月底才於《Nature Materials》[1]發表的砷化鈮(NbAs)則對未來半導體深奈米金屬連線提供了極有潛力的材料。
2019/4/11
SOT MRAM的原理與發展近況(二)
SOT MRAM既然使用了不同於STT MRAM的翻轉機制,在元件結構上也自然不同。STT MRAM的讀、寫電流均直接垂直通過MTJ;而SOT MRAM的讀取電流如舊,但寫入電流則依靠與自由層平行鄰接的材料中流過的電流,帶動二者界面上的自旋軌道作用所產生的轉矩,用以翻轉自由層的磁矩。
2019/3/28
SOT MRAM的原理與發展近況(一)
最近pSTT MRAM逐漸在各大代工廠進入量產階段,初步的工程工作算是一個階段的完成。有時候pSTT MRAM又叫做第三代MRAM,代與代之間基本上是以翻轉磁矩的機制來區分的。
2019/3/21
記憶體運算的可能趨勢
依據von Neumann架構,計算機中記憶體和控制單元是分離的,這也是目前計算機及相關的半導體零件製造的指導方針。但是在目前海量資料的處理與儲存上,這樣的架構對資料的「讀取—處理—儲存」循環在資料傳送速度、功耗上形成重大挑戰。特別是記憶體本身因寫入速度、保留時間等的特性差異,從cache、DRAM、NAND等形成複雜層層相轉的記憶體體制(memory hierarchy),讓資料的處理循環變得更長、更耗能。
2019/3/14
針鋒相對 中美科技的對撞點
白宮2月在官網上發布了「America will Dominate the Industries of Future」,由美國科學與技術政策辦公室(Office of Science and Technology Policy)發文,最前頭引用了川普(Donald Trump)的話,希望透過立法以投資基礎架構於先進產業。
2019/3/7
量子運算能算什麼?
去年是量子訊息科學風起雲湧的一年。受到之前中國大陸發射墨子衛星、設立量子訊息與量子科技創新研究院、布置京滬量子通訊骨幹網路等發展的影響,美、歐、日、韓等國都發布了高層次的國家量子科技政策,而台灣也整合產學、啟動了幾個大型計畫。量子訊息包含了量子通訊和量子運算等領域,量子通訊能保障通訊安全,是國家安全議題。但是量子運算能做什麼?這是個基本問題。
2019/2/22
5G新紀元不遠 標準、規格怎麼看?
5G的第一階段標凖Release 15於2018年6月含SA (standalone)的方案己完整公布,第二階段的標凖Release 16則將於2020年底公布,5G距完整布建的時間不遠了。
2019/2/14
美國眼中的中國大陸科技威脅
MIT Technology Review (MIT TR)是MIT所擁有的獨立刊物,原先的讀者群是尖端科技精英,後來逐漸轉向商務人士及一般大眾。由於背後有強大的科技諮詢團隊,雜誌中的科技敘述及評論大致八九不離十。時值中美貿易談判,本期的主題就是「The China Issue」,語帶曖昧。
2019/1/31
嵌入式MRAM和獨立式MRAM要分流了!
幾乎所有的新興記憶體出道時都宣稱與CMOS製程相容,意思是可以做邏輯製程的嵌入式記憶體。這意味著開發一種記憶體技術可以一魚兩吃,適用於嵌入式和獨立式記憶體。但是從歷史的發展來看,這樣的一廂情願最後很難堅持,像eDRAM幾乎很少用過,eFlash最終停留在65nm,很難與邏輯製程一起微縮,而且此時的嵌入式記憶體製程與獨立式記憶體製程早已大相逕庭了!
2019/1/24