智慧應用 影音
從南韓最新偶像男團Plave說起
前幾天在南韓一個主要流行歌曲音源榜Bugs上,有個出道2個多月的男偶像團體Plave首次拿下音源排名的第一、二名。南韓有不計其數的男團競相出道,相信多數讀者跟我一樣,記不得團名,分不清誰是誰,但Plave這團卻沒這個問題,因為他們是虛擬偶像。這個團體有5位成員,分別是諾亞、藝俊、班比、銀虎、河玟,有著外貌、身高、歲數、隊內角色擔當等角色設定,最年長的成員諾亞也才22歲,除了個子最小成員班比為174公分外,其餘成員都在180公分以上。這樣一個新出道虛擬男團,如何打敗眾多真實偶像團體拿下Bugs音源榜榜首?先來看一下這幾年南韓的虛擬偶像發展,如同我們在探討元宇宙有虛擬實境(VR)、擴增實境(AR)、混合實境(MR)、延展實境(XR)等定義和分類,南韓在虛擬偶像的經營上,做了可與此相對照的多元嘗試。一、實體偶像的虛擬分身:SM娛樂(SM Entertainment)的一線4人女團aespa在2023年5月剛推出的新專輯《My World》創下銷售破200萬張的佳績,其自2020年出道時,每位成員都擁有元宇宙的虛擬分身ae,分別為ae-Karina、ae-Winter、ae-Giselle、ae-NingNing(出道曲Black Mamba MV),2022年還跨界到RPG手機遊戲《第七史詩》,成為遊戲副本主角。二、虛擬偶像團:包括2021年出道的ETERN!TY及2023年出道的MAVE:等,前者是個11人的女子大團,出道前幕後推手人工智慧(AI)公司Pulse 9,還舉辦仿效南韓知名選秀節目的模式,推出101位AI女練習生供網友票選出前十一名出道。 (可見最新單曲DTDTGMGN MV )後者則是南韓影視娛樂業霸主之一的「Kakao娛樂」與遊戲公司「Metaverse娛樂」合作推出的4人女團,出道單曲Pandora自2023年1月下旬發布以來,迄今在YouTube上已達2,320萬次瀏覽紀錄,按讚數高達40萬次。(可見Pandora MV)三、虛實混合團:南韓第一個虛實混合團乃偶像男團Superkind,2022年推出第一位成員擔任門面角色的虛擬人物Saejin,這5人團體的另4位成員都為真人,2023 年3 月發布最新單曲,又新增1真人1虛擬人,擴編成為7人團。 (可見Moody MV)四、真人+2次元外皮團:這種組團模式就是本文一開始所談的Plave,幕後推手是南韓三大公營電視台之一的MBC旗下公司VLAST。Plave是一個5人男團,外形乃是南韓直條網路漫畫風格的俊男,但在這「二次元漫畫外皮」後卻是有5位真人團員,以3D模組+動態捕捉方式演出,於2023年3月12日推出首張專輯《ASTERUM》出道。(可見出道曲Wait for you初舞台 )一般南韓偶像團體推出新的單曲或專輯時,會有數週密集宣傳打歌期,衝刺流量與銷量,過了這段時間後在排行榜上成績就逐步往下,而像Plave這般單曲推出3個月後才「逆行」攀升至排行榜首位的情況極為罕見。我的觀察是,其他的虛擬偶像的呈現都是預先設定好的演出,但Plave則因為虛擬偶像外皮後是5位能唱能跳的真人,透過舞蹈挑戰、跆拳道示範等各種主題直播,可跟粉絲密切互動;由於是3D建模,在直播時常常出現團員間嚴重穿模(肢體間相互穿透疊加)或是肢體突然扭動至不可能角度的情況,團員間常常得自嘲或亂掰來因應補救,造成很多「爆笑梗」,也讓愈來愈多人入坑變成粉絲。從1996~1997年第一代偶像團體H.O.T、水晶男孩與S.E.S發展迄今,南韓偶像團體市場版圖早已涵蓋全世界,防彈少年團與Blackpink更成為全球最頂尖的潮流偶像。在這片市場沃土上,不僅有如IVE與New Jeans等大勢團體持續擴大聲勢,也有如本文提到導入新科技與新經營模式,探索虛擬偶像的各種可能。雖然元宇宙如今熱度稍退,但生成式AI的出現對元宇宙內容的發展卻是一大助力,擁有全球市場滲透力及已然嘗試多元虛擬偶像經營模式探索的南韓,是否又將在元宇宙再創新一波韓流呢?Plave出道迄今初嘗成功的經驗,是否也在提醒我們,high tech也需要high touch呢?
從「半導體即國力」到「AI即國力」
我受邀擔任「台灣AI超算年會- AI 2.0 · 超算 · 新生態」的座談主持人,當台智雲總經理吳漢章結束完Keynote演講,我問他,面對生成式人工智慧(Generative AI)的風起雲湧,有什麼感覺?他回答:「很興奮!」的確是,從PC、網際網路、智慧型手機、電動車以來,又再出現讓大眾如此「有感」的新科技,而對身處科技產業業內的我們,卻也知道,這是一個「AI大航海時代」的來臨,有識企業都在承浪而起,拓展自己的事業新版圖。我認為影響未來10~20年台灣科技產業發展的宏觀趨勢有三:「地緣政治」、「淨零碳排」與「人工智慧」。在國際秩序下,面對「地緣政治」衝擊我們只能因應與自保;「淨零碳排」可依循巴黎氣候協定各國訂出的碳中和目標與藍圖,逐步自我提升與發展新事業;但「人工智慧」ChatGPT這一波來得又急又猛,來不及完善布局就得提刀上陣,而我們也難以想像,繼ChatGPT後,未來的AI新技術/新模型又會給我們什麼意外的驚喜/驚嚇?因為高度衝擊性與與高度不確定性,所以才令人興奮!在中美貿易戰與COVID-19(新冠肺炎)後,由於攸關國家與供應鏈安全,但半導體先進製程產能卻集中在台韓,而中國透過國家資本投入急起直追,美、歐、日等主要國家/地區才意識到「半導體即國力」,祭出晶片法與巨額補貼法案,提振在地的半導體供應鏈。美、歐、日乃至韓、中等地所欣羨的,是台灣以晶圓代工廠為核心的完善半導體產業生態系,這些國家需要「120%努力」甚至「強求」才有機會獲得這樣的國力,但對台灣而言,這「半導體國力」就只是我們的日常運作而已!在生成式AI浪潮襲來,從美國的Open AI、微軟(Microsoft)、Google,到中國百度的文心一言,大型語言模型(LLM)/多模態(Multi-Modal)模型成為中美兩國競逐市場乃至競逐國力的顯學,宣告著「算力即國力」、「AI即國力」的時代已然來臨。「AI即國力」的時代,台灣供應鏈扮演關鍵推手,台積電的先進製程支持著NVIDIA、超微(AMD)、英特爾(Intel)的新世代GPU與CPU,以電子六哥為首的供應鏈,供應全球9成以上的伺服器,但這就代表台灣具有AI國力嗎?不是的,在機器學習(Machine Learning)/深度學習(Deep Learning)的規模化應用上,我們不可諱言落後中美等領先國家不少距離,而「產業AI化、AI產業化」的發展願景,可調查看看有多少業者從AI賺到大錢即可知迄今成效如何。傳統商業競爭基於規模經濟/範疇經濟,往往是「大吃小」的競局;網際網路時代基於網路效應(Network Effect),是「快打慢」的競局,在AI時代呢?優秀的新算法/新模型發布,往往不用幾個月時間,大量商業化應用便如雨後春筍般出現,可以預見生成式AI時代乃是「加速快打慢」的競局,early adopter與follower間的落差只會愈拉愈開。自ChatGPT於2022年11月發布,全球各國同步開始競逐「AI大航海時代」的版圖,台灣能基於「AI即國力」的前提下,成為early adopter,並將發展出來產業應用/企業應用滲透海外市場嗎?機器學習/深度學習的AI 1.0時代,除了政府、人工智慧學校、公有雲與NVIDIA等少數業者希望促成整體生態系發展外,多數業者其實各行其是、各自發展。如今台智雲在台灣AI超算年會上,揭露自身「AI Foundry」的策略定位,將自身台灣杉二號超級電腦的算力資源與多個預訓練模型開放給外部使用,以企業自身數據建立企業自身的地端模型與應用,並希望結合各界共同發展AI 2.0生態系。延伸報導開放生態助AI發展 台灣自研LLM接軌企業需求說實在,要扮演平台角色去enable整個生態系並不容易,能否成功仍是未知之數,但台積電1987年成立時,誰又能預見30餘年後會成為台灣的護國神山呢?圖説:從美國的Open AI、微軟、Google,到中國百度的文心一言,LLM/多模態模型成為中美兩國競逐國力的顯學,宣告著「AI即國力」的時代已來臨。符世旻攝(資料照)
從Google搜尋趨勢看三大AI技術浪潮
Google搜尋趨勢(Google Trend)是個好用的工具,有時我會透過搜尋熱度變化情況,觀察某個議題的發展。這次我鍵入AI技術典範轉移的3個字詞「Expert System」、「Deep Learning」、「Generative AI」,看看會呈現出哪些結果?若以Google Trend最早能提供查詢資料的時間2004年作為起始時間,「Expert System」的搜尋熱度一路往下,而「Deep Learning」則從2013年起搜尋熱度開始走揚,並於2014年與「Expert System」出現走勢交叉的情況。Expert System是早期真正商用化的AI技術,屬於規則式學習(rule-based learning)。其組成包括知識庫、推論引擎和用戶介面等3部分,透過大量請教專家,採用if-then-else的結構將專家知識和經驗建成知識庫,推論引擎則根據知識庫中的規則和推論機制來推論和決策,用戶介面則是如同ChatGPT,可用問答方式來獲取專家系統推論的答案。Expert System熱潮在80年代,因人類諸多內隱知識難以表達與形成規則,及規則式學習建立與維護資料庫的複雜度隨時間持續提高,專業領域專家系統(如醫療、土木等)逐漸式微,而一般企業管理用途的規則系統,逐漸被整合至如甲骨文(Oracle)與SAP等業者的企業應用軟體中。2012年多倫多大學教授Geoffrey Hinton與其2位博士班學生Alex Krizhevsky、Ilya Sutskever發表〈ImageNet Classification with Deep Convolutional Networks〉此一論文,帶動Deep Learning興起。機器視覺領域有個2010年由李菲菲發起的奧林匹克級學術競賽(ImageNet Large Scale Visual Recognition Challenge;ILSVRC),前2年優勝團隊都是採用傳統的機器視覺技術,Krizhevsky、Sutskever與Hinton的CNN神經網路模型AlexNet,在2012年競賽「top 5 test error rate」指標中,創下競賽以來的最佳成績15.4%,領先第二名的26.2%近11個百分點,從此Deep Learning躍為機器視覺領域主流。當2015年微軟(Microsoft)的ResNet以錯誤率3.6%勝過人類肉眼的5%錯誤率時,包括智慧交通、人臉辨識、瑕疵檢測等多元市場商機隨之起飛,也反應在從2013年迄今「Deep Learning」搜尋熱度上。相較於「Deep Learning」為既有資料進行分類與分群等分辨工作(如人臉辨識),「Generative AI」則是學習輸入資料的模式和結構,其後根據訓練數據的分布,生成相似但全新的數據。2014年的Ian Goodfellow提出的生成式對抗網路(Generative Adversarial Network;GAN),可說是帶動生成式AI發展的里程碑。接下來這幾年搜尋熱度微幅上揚,生成式AI主要是在專業族群中愈來愈受關注,直到2022年11月ChatGPT的橫空出世,引發媒體與社會大眾的關注與使用,搜尋熱度才急遽攀升。若直接比較ChatGPT與Expert System及Deep Learning,更可看到由於ChatGPT的爆炸性搜尋熱度,相對而言,Expert System及Deep Learning的搜尋熱度已被攤平成貼近水平的直線。Expert System之父Edward Feigenbaum在2007年接受美國電腦歷史博物館(The Computer History Museum)口述歷史訪談,在被問及「我們如何賦予電腦知識?」時,他回答「我想唯一的方法就是依循人類文明現有的方式。我們藉由文本這個文化結晶來傳遞知識。過去是手稿,接著是印刷文字,現在則是電子文本……我們需要想辦法讓電腦讀化學書來學化學,讀物理書來學物理,或者是生物學等其他學科……我們的人工智慧程式是手工製作並以知識建造的,除非我們有辦法設計出能夠閱讀、理解文本並從中學習的程式,否則我們將永遠無法突破。」(引用自陽明交大《數理人文》期刊第10期,〈人工智慧專家系統之父—專訪涂林獎得主費根堡之生涯回顧〉一文)Feigenbaum那時並未料到,Google的BERT與Open AI的GPT等近年發展的LLM在訓練文本上的驚人數量級提升。以Open AI來說,從2018年GPT-1的5GB訓練數據量/1.1億個參數,提高到2020年GPT-3的45TB訓練數據量/1,750億個參數。之後Open AI便不再公布訓練資料量,但最新發布的GPT-4估計可能超過1兆個參數。帶來的突破性成果正在為全世界各個領域的人們所嘗試與運用中。Deep Learning的2位關鍵開創者中,Ilya Sutskever是OpenAI的聯合創辦人及首席科學家,持續推進最前沿AI技術的發展,但近日Geoffrey Hinton卻離開Google,且呼籲人工智慧給人類帶來的威脅可能比氣候變遷更急迫,而曾是Open AI共同創辦者的Elon Musk也大聲疾呼暫停開發和測試比GPT-4更強大的語言模型。我不禁想問如今已87歲高齡的Feigenbaum,身為自然語言處理AI宗師的您,當強AI時代愈來愈近時,人類該如何踏出下一步呢? 
雲端服務大勢所趨 帶動台廠伺服器長期商機
2023年第1季電子產業上下游仍處庫存調節階段,在營收表現上相較2022年同期多呈停滯甚至衰退。然而,大型(Hyperscaler)雲端服務業者營運表現相對仍佳,加上生成式人工智慧(Generative AI)帶動的新應用熱度正夯,後續成長動能值得關注。2023年第1季亞馬遜(Amazon)AWS營收達213.5億美元,年增16%;微軟(Microsoft)Azure營收年增27%,另外Google Cloud Platform(GCP)營收年增率亦達28.5%。上述3家業者佔公有雲端服務市場比重約65%,維持強者續強的態勢。 回顧過去5年公有雲端服務市場成長情況,年複合成長率超過20%,AWS約佔全球IaaS、PaaS及代管私有雲(Hosted Private Cloud)服務市場的3分之1,維持第一大地位。AWS近期表示已對全球超過10萬個客戶提供人工智慧/機器學習(AI/ML)服務,相對於亞馬遜非雲端業務,近幾年AWS營收年成長率高出15~20個百分點、營業利益率也高出20個百分點以上,是亞馬遜整體版圖擴張及獲利成長的主要動力所在。微軟雲端相關(包括Azure、Microsoft 365等)營收比重亦大幅提高至佔整體公司營收約45%,企業策略定位明顯轉向雲端服務,在雲端服務市場佔有率亦逐步攀升,居全球第二大地位。隨著微軟生成式AI服務將導入旗下各個產品上,對雲端業務推廣預期將有推波助瀾的效果。展望2023年,受全球經濟景氣動能減緩影響,雲端服務市場成長動能確實不及2022年,如AWS營收年成長率在2022年第4季時為20%,2023年第1季減少至16%,預估2023年第2季時成長率再減至12%。不過,以中長期而言,雲端服務市場的長期發展仍應正面看待。由於企業IT採雲端方式進行可帶來彈性,資產投報率將會較佳,IT支出朝向雲端轉移的趨勢不大可能逆轉,加上AWS表示目前全球IT支出僅10%是在雲端進行,後續雲端服務市場的發展空間仍相當龐大。為因應雲端服務市場成長趨勢,雲端資本支出勢必連帶成長。以2023年第1季為例,微軟、Meta的資本支出年增率分別約24%、28%,2023全年亞馬遜的資本支出預算雖預估將較2022年減少,但AWS的部分則可望繼續成長。台灣伺服器廠商的客戶組成,來自於惠普(HP)、戴爾(Dell)、浪潮等伺服器品牌業者比重已退居第二,雲端服務業者則已躍居首位,且後者比重近年來持續攀升。因此,雲端服務業者的伺服器訂單,對台廠重要性日增。台灣與雲端服務相關的產業主要包括晶圓代工、IC載板、高速傳輸介面、伺服器組裝以及電源供應器、機櫃等次產業。以最直接相關的伺服器業者而言,台灣佔全球伺服器生產即超過93%。短期方面,根據DIGITIMES Research的調查,由於客戶調整訂單等因素,第1季全球伺服器出貨量較2022年第4季衰退,跌破400萬台(以主機板計算);2023年第2季因第1季基期較低,及品牌商新平台可望優先放量,預期出貨將有低個位數季增。展望未來,雲端服務市場成長趨勢未變,在生成式AI引發的新浪潮下,高單價的AI伺服器出貨量成長可期,儘管佔比有限。關於最新伺服器產業的分析及預測,請參考DIGITIMES Research伺服器產銷調查報告。延伸報導產銷調查:1Q23全球伺服器出貨跌破400萬台大關 2Q23出貨將僅季增3.9% ChatGPT效應有限
銅混合鍵合的發展與應用(三):未來應用
混合鍵合技術的新應用中,最引人注目的當屬高效能計算(High Performance Computing;HPC)。HPC在晶圓代工的產能中佔據最顯著的份量。HPC架構主體主要含處理器和記憶體。處理器通常以最先進的邏輯製程製造,但是記憶體(DRAM)的製程進展較邏輯製程緩慢,這個就產生落差。兩者之間溝通落差限制整體表現,而且製程也截然不同,屬於「異質」。延伸報導先進封裝技術競逐略有起伏 HPC導入熱度高於手機AP解決兩者之間效能落差的方法之一是利用平行處理。現在的處理器多具有雙位數數量的核(cores),每個個核需要支援其運作的個別記憶體。數量如此多的核-記憶體之間的連線需要多個I/O接點以及高頻寛,這就是十年前開始出現高頻寛記憶體(High Bandwidth Memory;HBM)需求的驅動原因。HBM是用2.5D封裝技術將CPU與至多8個DRAM堆疊封裝,其處理器與記憶體之間的連接是透過晶片的微鍵(microbond)連接底下中介層的金屬線至另外的晶片,如此一來I/O與連線的密度都可以大幅增加。對於常用於AI常用的GPU晶片,其核的功能比較專一,所以每個核的面積較小,一個晶片裡核的數目動輒上千。每個核所需要對應記憶體容量不需要很大,但是因為核與記憶體的數目有數量級的提升,連線及I/O的數目要求更高,此時銅混合鍵合就能提供其所需要的效能。這個應用也是目前多家代工廠、DRAM廠的技術及業務能力擴展方向。2022年3月Graphcore發布於台積電造的Bow IPU號稱是世界第一個3D WoW處理器,利用到的是混合鍵合的另一種優勢。2片晶圓一邊是AI處理器及其協作的記憶體,主要包括1,472個IPU(Intelligent Processor Unit,Graphcore為其處理器的命名)以及與各IPU協作的獨立900MB的分散式SRAM;另一個晶片負責提供電源。如此結構設計,Graphcore宣稱可以提升效能40%以及節省功耗16%。超微(AMD)最近的Ryzen系列也因為不同的原因採取混合鍵合技術,雖然使用的是CoW的技術,而非WoW。超微將CPU中面積較大的L3 cache單獨拿出並擴增容量、單獨生產,在不增加CPU系統面積的情況下,增加可用的SRAM容量,減少一般資訊處理必須傳送到DRAM的需求,因而提升速度、減少功耗。延伸報導銅混合鍵合的發展與應用(二):商業化應用其他混合鍵合的應用現在可預見的還包括無線通訊、AIoT、PMIC等。在混合鍵合的製造成本下降後,應用領域還有可能延拓的更廣泛。從晶片異質整合、效能提升、減少功耗、縮小面積等的幾個優點考量,只要混合鍵合的成本下降至各優點的價值臨界點後,技術的採用將會一一浮現。學習已經商業化的、正在醞釀中的應用並且分析其得失,是尋找新應用的 必要學習過程。 
銅混合鍵合的發展與應用(二):商業化應用
混合鍵合的最大特色是晶片對外連接金屬墊(metal pad)的尺度是「半導體製程級」的。相較於之前用於中介板的微凸塊(microbump)間距40um,混合鍵合的鍵合間距可以小達1~2um,限制尺寸的原因主要來自於對齊的精確程度,還有進一步改善的空間。這樣的鍵合間距代表每平方公分晶片面積可以承擔百萬個連結,這比任何既存的封裝方式都有幾個數量級的提升。連線鍵合數目愈多意味著2個晶片之間容許更高頻寬的溝通,有利於平行運算,也容許較高電流。功能模組之間的連線也較尋常方式為短,所以速度快、噪音低、功耗也較小。另外混合鍵合本來就是異質整合、3D堆疊先進封裝中的一種方法,所以二者的優點也自然都有。商業應用混合鍵合的半導體產品,首先是 Sony的CIS。CIS有幾個組成部分:畫素陣列(pixel array)、類比數位轉換器(Analog-to-Digital Converter;ADC)、影像訊號處理器(Image Signal Processor;ISP)。畫素陣列基本上是1層多晶矽(polysilicon)與5層金屬的製程;ADC與ISP則是1層多晶矽與10層金屬的製程,二者的製程差距甚遠,符合「異質」特徵,應該分別製造。二者的3D晶片堆疊還能縮小鏡頭尺寸,所以Sony早在2016年就將分別製造的畫素陣列晶圓與ADC+ISP晶圓混合鍵合,替代原來在同一晶片的設計製造。由於混合鍵合大幅增加金屬連線密度,使得ADC可以平行處理畫素,大幅提升畫面處理的能力,譬如全域快門(global shutter)、影片的每秒幀數(frame per second)等。目前的設計趨勢是向每個畫素都有獨立的ADC方向邁進。進一步的工作是將DRAM也加入CIS的3D堆疊,做為畫素處理的緩衝記憶體(buffer memory)。Sony和三星電子(Samsung Electronics)都有此設計,只是DRAM堆疊位置不一。影像在車輛的應用,譬如用來偵測前方物件距離的時差測距(Time of Flight;ToF)的單光子雪崩探測器(Single Photon Avalanche Detector;SPAD);或在工業的應用,譬如機器視覺(machine vision),都可能需要再加入能執行邊緣計算(edge computing)晶片。CIS啟動混合鍵合的商業應用,歷史較長,較長遠的應用規劃也漸入視野。另外一個也進入商業量產的應用是3D NAND。平面NAND的記憶體細胞陣列(memory cell array)與其他邏輯線路-包括微控制器(microcontroller)、位址寄存器(address register)等,是放在同一晶片上的。3D NAND 的記憶體細胞陣列持續往3D方向堆疊,但是邏輯線路上方卻空無一物,嚴重浪費珍貴的晶片房地產(real estate)。所以長江儲存首先以XtackingTM技術將邏輯線路部分以混合金鍵合方式置於記憶體細胞陣列之下,大幅提高晶片房地產使用效率。其他公司後來也採取類似方法。不過在此例中,金屬墊的密度不需要特別的高。
銅混合鍵合的發展與應用(一):技術輪廓
先進封裝大概可以分為兩大類趨勢:一個是小晶片(chiplet)。小晶片將傳統上較大型的積體線路分拆成許多較小的功能模組,先個別予以優化。再使用這些已優化的小晶片組織新的次系統。這樣可以重複使用IP,大幅加速產品設計的速度以及降低設計成本。至於各個小晶片之間的連接,倚靠底下仲介層(interposer)內的金屬連線。此連線的密度當然遠高於傳統的線路板或封裝I/O所能支援的密度,大幅增加線路運作頻寛(bandwidth)、增大平行運算的操作空間。另一個方向自然是異質整合(heterogeneous integration)。將不同製程或不同材料的晶片堆疊在一起,以整合方式提升、擴充組裝元件的功能。除了已經商業化的方法外,基本上有晶片-晶圓(Chip-on-Wafer;CoW)及晶圓-晶圓(Wafer-on-Wafer;WoW)等2種鍵合型態。二者在鍵合後都需要再切割晶粒,但是也有例外。CoW程序較複雜,所以WoW可能早些普及。晶圓間鍵合的技術又有很多種,現在已經進入商業化的技術之一是「銅-銅混合鍵合」(Cu-Cu hybrid bonding),這也是本文討論的主題。銅-銅混合鍵合技術是將2片欲鍵合在一起的晶圓,各自完成製程最後一步的金屬連線層,此層上只有2種材質:銅及介電質。介電質可以是氧化矽或高分子材料,二者各有優缺點,使用何種物質依製程需要而定。由於晶圓鍵合時牽涉到銅及介電質兩種材料介面,所以稱之為混合鍵合。2片晶圓面對面鍵合時是銅金屬對銅金屬、介電值對介電質,兩邊鍵合介面的形狀、位置完全相同,晶粒大小形狀也必須一樣。所以使用混合鍵合先進封裝技術的次系統產品各成分元件必須從產品設計、線路設計時就開始共同協作。混合鍵合製程約略如下:兩邊晶圓在完成最上層之金屬製程後,經化學機械研磨(Chemical-Mechanical Polishing;CMP)及清洗後,2片晶圓面對面對齊(alignment)。介電質先經離子活化(ion activation),兩邊介電質接觸後產生共價鍵。兩邊銅的表面原先較介電質稍低,在退火(annealing)時因膨脹係數較介電質為大而增高接合,兩邊銅離子因相互擴散(diffusion)進入對方而形成密切的永久性接合。晶圓平坦化(planarization)不足、殘留粒子、對齊誤差及金屬介面孔隙(void)等均有可能影響元件特性或失效。目前混合鍵合機台已有多家設備廠商投入量產。如EVG、SUSS MicroTech、TEL、AML等,典型機台如EVG的Gimini系列。由於現代設備廠商在銷售機台時多附有機台相關之基礎製程,混合鍵合製程的開發通常不算是嚴峻的挑戰。目前銅混合鍵合的封裝製程良率已經可以到達一般後段封裝的典型良率99%以上。一部分原因是於此技術的累積發展與已經商業化的機台設備同步,但是更重要的原因是兩邊晶片的設計團隊期前的設計溝通,在重複單元區留下適度的冗餘(redundancy),當鍵合時發生缺陷時,有足夠的空間來騰挪。
AI時代創意如何養成?
最近有人問我,在ChatGPT時代下的創意如何養成?經我詢問ChatGPT後,我過去的想法和ChatGPT的答案是一致的(雖然ChatGPT的措辭變來變去)。在「雞尾酒」(Cocktail)這部1988年的電影,Tom Cruise飾演一位在職進修的酒保,到一家商學院學習如何創業,最後放棄進修,並向一位資深酒保說明放棄進修的原因:「教授上課都在胡扯(Bullshit)」這位資深酒保笑著回應:「你知道教授只會胡扯,就有資格畢業啦。」這位老酒保意思是說,教授沒有實戰成功經驗,卻在課堂上教學生如何創新創業,只不過是誤人子弟,浪費學生時間罷了。我看了不禁莞爾,寫劇本的老兄顯然吃過教授的虧。依我的淺見,創意可經由2種方式培養。第一種方式是在觀察有創意的人的過程中學習其創意。換言之近朱者赤,近墨者黑,這是所謂的米開朗基羅效應(Michelangelo Effect)。這個效應是心理學家觀察到的現象—相互依存的個人會影響和 「塑造」對方—如果你有決心學習創意,在觀察有創意的人的行為過程,漸漸能雕塑出自己的創意風格。一般大學進行系統式的授課,沒有創意涵養的教授仍然可以照本宣科,但產生的米開朗基羅效應,卻教出沒有創意的學生。難怪「雞尾酒」尖酸的下結論:「教授上課講的都是胡扯。」米開朗基羅(Michelangelo Buonarroti)是真正有創意的大師,一塊頑石在他手中能化腐朽為神奇,雕塑出藝術品。心理學家因此以他命名米開朗基羅效應。第二種方式是鯰魚效應(Catfish Effect)。原意是指透過引入強者,激發弱者變強的一種效應。漁夫捕捉沙丁魚食,返航後沙丁魚都已奄奄一息,賣相甚差。有一位挪威船長將鯰魚和捕獲的沙丁魚放在一起,沙丁魚為了閃避東游西竄的鯰魚,不停游動保命,終可在漁船靠岸時存活下來,是為鯰魚效應。此效應亦可引伸為棋逢敵手,能互相砥礪成長的意思。米開朗基羅和達文西(Leonardo da Vinci)兩位文藝復興時期的藝術大師,有鯰魚效應的故事,彼此良性競爭,激盪出藝術創作的火花。話說義大利翡冷翠打算為維奇奧宮繪製大廳內的巨幅畫作,同時邀請米開朗基羅和達文西來「投標」爭取創作。兩個人競爭,最後都因故放棄,沒有分出高下。後來兩個人又較勁製作大衛雕像。結果米開朗基羅勝出,獲選為製作大衛雕像的藝術家,完成永垂不朽的雕像。落敗的達文西專注投入解剖學研究及繪畫創作,在科學與繪畫上締造出偉大創新。說了半天,如何利用ChatGPT來幫您利用米開朗基羅效應(鯰魚效應)養成創意?您不妨就單刀直入,直接問它:How to use ChatGPT to create Michelangelo Effect (Catfish Effect) for innovation?比對米開朗基羅和達文西的例子及ChatGPT給您的答案,或許您更清楚如何進行。 
麥克風的問世
ChatGPT橫空出世,推動人工智慧(AI)更大的浪潮,也革命性地改變舊有技術。例如人工智慧在麥克風增強應用方面扮演重要角色。結合自然語言處理和AI技術,麥克風可進行多種創新應用,包括語音識別、情感檢測、聲音分析、噪音消除和多語言翻譯等。麥克風是Emile Berliner發明的語音輸入裝置。早期麥克風主要用於錄製黑膠唱片。貝里納成立留聲機公司Gramophone,並以畫家Francis Barraud的作品《His Master’s Voice》作為商標。商標中的小白狗名叫Nipper。Nipper有一次發現一部留聲機,充滿疑惑地歪著頭打量,這個情景被Barraud捕捉下來,成為Gramophone的商標靈感。1901年,Berliner在美國成立勝利唱機公司(Victor Talking Machine Company),後來被收購並更名為RCA(Radio Corporation of America)。圖一:Emile Berliner(1851~1929)。林一平 麥克風技術的後續精進歸功於David Hughes。Hughes在1878年對愛迪生麥克風的音量做出重大改進,並申請專利。這項發明在1920年代仍在不斷改良,最終演變成大眾今天使用的碳粉式麥克風。作為一名音樂家,Hughes的麥克風發明還挽救長笛在爵士樂中的地位。長笛的音量較小,當與其他樂器如小喇叭或薩克斯風一起演奏時,往往會被掩蓋。因此,長笛通常只能在音高較高的部分做些裝飾性演奏,讓聽眾勉強察覺它的存在。有了麥克風的幫助,長笛的可用音域得到顯著擴大,終於能在爵士樂演奏中大顯身手。筆者的研究團隊正發展麥克風的AIoT技術,稱為MusicTalk,希望利用AI技術改善麥克風產出的聲音,其關鍵在於運用音律的原理。音律的原理是誰發明?應該是十六世紀朱載堉。朱載堉是明宗室鄭恭王朱厚烷嫡子,發明演算法將八度音切割為十二等分,並製造出新法密率律管及新法密率絃樂器,是世界上最早的十二平均律樂器。理論很難,做法卻簡單。在調整琴弦時,將第一音弦的長度除以密率(亦即2的十二次方根),就可得到第二音弦的長度。以此類推,到達第十三次時,就會得到一個完全的八度音。遠傳饒仲華博士與筆者曾寫過一篇論文,設計手機音樂語言,可以調整手機麥克風收音後的優化,其音律校正,源自於朱載堉的理論。圖二:朱載堉(1536~1610)。林一平
Tesla減少碳化矽用量 替代方案有解
近期外電及本地媒體大幅報導Tesla宣告將減少電動車中碳化矽(SiC)元件的使用量,並造成了幾家SiC供應商頓時股票大跌,包括Wolfspeed、意法(STM)、安森美(Onsemi)及英飛凌(Infineon)等。接下來隨即即有專家開始討論,Tesla是如何達到減少75%的SiC用量?半導體功率元件跟摩爾定律最大的不同在於,IC每進入一個新的製程節點,面積就會縮小一半,功率元件遠遠做不到。於是就有不同的組合被提出來,包括由原先的平面式(planar)SiC MOS電晶體,改為先進的溝槽式(trench)電晶體;或者因為電動車的電池系統要由400V改為800V,SiC MOS耐壓也要由650V挺進到1200V,由於電流可以減少一半,SiC MOS晶片面積得以等比例減少。但是,再怎麼算也到不了減少75%。最後只得加上馬達所需功率的減少,才勉強可以湊足。可是Tesla同時又宣布,未來馬達設計不使用稀土元素,這使得馬達效率的提升更形困難。Tesla此舉的目的是要降低成本,以建構與其他競爭者的障礙。但不論就使用溝槽式或1200V SiC MOS,的確晶片面積是可以減少,製程卻變複雜,實際成本下降反而有限,再加上這些都是所有競爭對手知道的趨勢,因此這會是個假議題嗎?在提出個人解答之前,筆者想先談一下製造產業的學習曲線。陳良榕先生在友刊的文章中提到,張忠謀在德儀(TI)及台積電,就是利用學習曲線創造出與競爭對手的差距,這在以製造為導向的產業是非常的重要。試想一個資本攤提完成的半導體廠,不僅成本最低,良率最好,同時單位的產出也最多,而新進競爭者,還在學習曲線的初期,是看不到台積電的車尾燈。Tesla現在也是利用所經歷學習曲線的優勢,來創造競爭優勢,而逆變器(inverter)所使用的SiC MOS就是個可以發揮的項目,因為價格不斐。個人的淺見認為,Tesla是使用Si IGBT(insulated-gate bipolar transistor;絕緣柵雙極性電晶體)取代SiC MOS,並使用SiC二極體(Schottky diode),作為IGBT所需的飛輪二極體(freewheeling diode;FWD)。電晶體分為兩類,一為雙極性(bipolar),另一為單極性(unipolar),也就是MOS。雙極性電晶體中電流與電壓之間的關係是指數函數(exponential),而MOS電晶體電流與電壓是1~2次方關係。所以雙極性電晶體在輸出電流驅動的能力是大於MOS,但是雙極性電晶體是靠輸入電流來工作,MOS則依靠絕緣柵極的電壓來動作,故雙極性電晶體比較耗電。IGBT的誕生即結合此二者優勢,在輸入端使用絕緣柵極(insulated-gate),而輸出保留高輸出電流的特性(bipolar)。逆變器主要的應用在於將電池的直流電轉換為三相交流電,用以驅動馬達。電晶體在此是作為電路的開關,MOS因為是對稱的元件結構,可以處理逆向流過的電流。但是IGBT的元件結構不對稱,需要額外並聯1個FWD。以SiC二極體作為FWD,可以大幅提升其效率,同時IGBT的高輸出電流能力,也可以提高逆變器的轉換效率。Tesla在Model 3使用SiC MOS之前,也是使用Si IGBT以及Si FWD,現在只需將Si FWD改為SiC。IGBT的缺點在於操作頻率較低,無法高溫操作,且耐壓不如SiC MOS,但這些在現行電動車系統,皆非嚴重問題。由於二極體電流與電壓的關係也是呈指數函數變化,再加上現行Tesla每一相開關是使用2顆SiC MOS並聯,筆者估計在相同輸出電流條件之下,使用SiC二極體的晶片面積,應該可以是 SiC MOS面積的25%。而二極體是製程最簡單的半導體元件,也最便宜,所以在SiC的費用上可以下降到原先的10~15%。只是還須加上個Si IGBT,因此總成本可為原先的30-40%。Tesla擁有別家車廠沒有的學習曲線,要拉大與競爭者的差距,如果筆者是Elon Musk,選擇Si IGBT加上SiC二極體的排列組合,降低SiC整體用量。